Contact Problems for a Wedge

  • V. M. Alexandrov
  • D. A. Pozharskii
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 93)


There are considerable differences between the first, stress, and the second, displacement, boundary-value problems for a three-dimensional wedge. Ufliand (1965) found the exact solution of the second problem by using the Kontorovoch-Lebedev integral transform on the real axis (see Ditkin and Prudnikov (1965)):
$${{f}_{*}}(T)=\int\limits_{0}^{8}{\frac{f(r)}{r}{{\kappa }_{iT}}(r)}dr,$$
$$f(r)=\frac{2}{{{\pi }^{2}}}\int\limits_{0}^{8}{{{f}_{*}}(T)\sinh }(\pi T){{\kappa }_{iT}}(r)dT.$$


Integral Operator Contact Problem Fredholm Integral Equation Neumann Series Aperture Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • V. M. Alexandrov
    • 1
  • D. A. Pozharskii
    • 2
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Mechanics and Applied Mathematics InstituteRostov-on-Don State UniversityRostov-on-DonRussia

Personalised recommendations