The Effects of a Polarizable Environment Represented by the Generalized Born Formula in Self Consistent Quantum Chemical Calculations: Application to the Study of Ambident Reactions

  • R. Constanciel
Part of the Quantum Theory Chemical Reactions book series (QTCR, volume 2)

Abstract

It is shown how the generalized Born formula can be introduced in self consistent calculations for, taking account of the effects of a polarlzable medium on a solute molecule. The extreme couse of strong polarlzable environment is treated by a first order perturbation theory. A simplified expression of the total energy is obtained and the main features of the zero order calculation are discussed and compared with the simplest empirical methods. This procedure is applied to the study of the nucleophilic addition on the qulnollnlum salts.

Keywords

Solute Molecule Polarizable Medium Nucleophilic Addition POLARIZABLE Environment Zero Order Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daudel R.: 1967, Théorie Quantique de la Réactivité Chimique. Gauthier-Villars, Paris.Google Scholar
  2. 2.
    Zahradnik R.: 1971, Aspects de la Chimie Quantique Contemporaine, Editions du C.N.R.S., Paris.Google Scholar
  3. 3.
    Comprehensive Chemical Kinetics: 1969, Ed. by Bamford L.H. and Tipper C.F.H., Elsevier, Amsterdam.Google Scholar
  4. 4.
    Pullman A.: 1976, 8th Jerusalem Symposium in Quantum Chemistry and Biochemistry, Ed. by Pullman B., D. Reidel Pub. Co., Dordrecht, Holland.Google Scholar
  5. 5.
    Ranghino G. and Clementi E.: 1978, Gazzeta Chim. Italiana, 108, p. 157.Google Scholar
  6. 5a.
    Romano S. and Clementi E.: 1978, Gazzeta Chim. Italiana, 108, p. 319.Google Scholar
  7. 6.
    Gladstone S., Laidler K.J. and Eyring H.: 1941, The Theory of Rate Processes, McGraw Hill.Google Scholar
  8. 7.
    Zahradnik R. and Koutecký J.: 1963, Collection Czech. Chem. Commun., 28, p. 904.Google Scholar
  9. 8.
    See by example Tapia O. in the present volume of this book.Google Scholar
  10. 9.
    Tapia O. and Goscinski O.: 1975, Mol. Phys., 29, p. 1653.CrossRefGoogle Scholar
  11. 10.
    Born M.: 1920, Z. Physik, 1, p. 45.CrossRefGoogle Scholar
  12. 11.
    Hoijtink G.J., de Boer E., Van der Meij P.H. and Weijland W.P.: 1956, Rec. Trav. Chim. Pays Bas, 75, p. 487.CrossRefGoogle Scholar
  13. 12.
    Jano I.: 1965, C.3R. Acad. Sci. (Paris), 261, p. 103.Google Scholar
  14. 13.
    Germer H.A.: 1974, Theoret. Chim. Acta (Berlin), 48, p. 75.Google Scholar
  15. 14.
    Miertus S. and Kysel O.: 1977, Chem. Phys., 21, pp. 27, 33, 47.Google Scholar
  16. 15.
    Constanciel R. and Tapia O.: 1978, Theoret. Chim. Acta (Berlin), 48, p. 75.CrossRefGoogle Scholar
  17. 16.
    Constanciel R.: 1980, Theoret. Chim. Acta (Berlin), 54, p. 123.Google Scholar
  18. 17.
    See by example Leroy G., Sana M., Burke L.A. and Nguyen M.T. in Vol. 1 of this book, p. 91.Google Scholar
  19. 18.
    Klopman G.: 1967, Chem. Phys. Letters, 1, p. 200.CrossRefGoogle Scholar
  20. 19.
    Miertus S. and Kysel O.: 1979, Chem. Phys. Letters, 65, p. 395.CrossRefGoogle Scholar
  21. 20.
    Pople J.A. and Beveridge D.L.: 1970, Approximate Molecular Orbital Theory, McGraw Hill, New York.Google Scholar
  22. 21.
    Harris F.E.: 1968, J. Chem. Phys., 48, p. 4027.CrossRefGoogle Scholar
  23. 22.
    McWeeny R. and Sutcliffe B.T.: 1969, Methods of Molecular Quantum Mechanics, Academic Press, London and New York.Google Scholar
  24. 23.
    Streitwieser A. Jr.: 1960, J. Amer. Chem. Soc, 82, p. 4123.CrossRefGoogle Scholar
  25. 24.
    Fisher-Hjalmars I.: 1965, J. Chem. Phys., 42, p. 1962.CrossRefGoogle Scholar
  26. 25.
    Chalvet O., Daudel R., Jano I. and Peradejordi F.: 1965, Modern Quantum Chemistry, Ed. by Sinanoglu O., Academic Press, New-York.Google Scholar
  27. 26.
    Fisher-Hjalmars I., Henriksson-Enflo A. and Herrmann C.: 1977, Chem. Phys., 24, p. 167.CrossRefGoogle Scholar
  28. 27.
    Klopman G.: 1964, J. Amer. Chem. Soc, 86, p. 4550.CrossRefGoogle Scholar
  29. 28.
    Daudel R.: 1962, Structure Electronique des Molécules, Gauthier-Villars, Paris (see in particular pp. 205–210).Google Scholar
  30. 29.
    Daudey J.P., Malrieu J.P. and Rojas O.: 1975, Localization and Deloalization in Quantum Chemistry, Ed. by Chalvet O. et al., R. Reidel Pub. Co., Dordrecht, Holland.Google Scholar
  31. 30.
    Del Re G., Pullman B. and Yonezawa T.: 1963, Biochimica and Biophysica Acta, 75, p. 153.CrossRefGoogle Scholar
  32. 31.
    Parr R.G.: 1963, Quantum Theory of Molecular Electronic Structure, W.A. Benjamin, New-York.Google Scholar
  33. 32.
    See Ref. (28) pp. 165–176.Google Scholar
  34. 33.
    For a review on empirical and semi-empirical methods, see Jug K.: 1969, Theoret. Chim. Acta (Berlin); 14, p. 91.CrossRefGoogle Scholar
  35. 34.
    Allinger N.L., Cava M.P., De Jongh D.C., Lebel N.A., Stevens C.L.: 1971, Organic Chemistry, Worth Publishers, Inc., New York.Google Scholar
  36. 35.
    Ri T. and Eyring H.: 1940, J. Chem. Phys., 8, p. 433.CrossRefGoogle Scholar
  37. 36.
    Coulson C.A. and Longuet-Higgins H.C.: 1947, Proc. Roy. Soc. (London), A191, p. 39.Google Scholar
  38. 36a.
    Coulson C.A. and Longuet-Higgins H.C.: 1947, Proc. Roy. Soc. (London), A192, p. 16.Google Scholar
  39. 37.
    Wheland G.W.: 1942, J. Amer. Chem. Soc, 64, p. 900.CrossRefGoogle Scholar
  40. 38.
    Dewar M.J.S.: 1952, J. Amer. Chem. Soc, 74, p. 3341.CrossRefGoogle Scholar
  41. 39.
    Fukui K., Yonezawa T. and Shingu H.: 1952, J. Chem. Phys., 20, p. 722.CrossRefGoogle Scholar
  42. 39a.
    see also Fujimoto H. and Fukui K., 1972, Adv. in Quantum Chem., 6, p. 177.CrossRefGoogle Scholar
  43. 40.
    Brown R.D.: 1959, J. Chem. Soc. (London), p. 2232.Google Scholar
  44. 41.
    Klopman G.: 1968, J. Amer. Chem. Soc, 90, p. 223.CrossRefGoogle Scholar
  45. 42.
    Klopman G. and Hudson R.F.: 1967, Theoret. Chim. Acta (Berlin) 8, p. 165.CrossRefGoogle Scholar
  46. 43.
    Bertran J., Chalvet O., Daudel R., McKillop T.F.W. and Schmid G.H.: 1970, Tetrahedron, 26, p. 339.CrossRefGoogle Scholar
  47. 44.
    Chalvet O., Daudel R. and McKillop T.F.W.: 1970, Tetrahedron, 26, p. 349.CrossRefGoogle Scholar
  48. 45.
    Evans M.G.: 1939, Trans. Faraday Soc, 35, p. 824.CrossRefGoogle Scholar
  49. 46.
    Hantzsch A. and Kalb M.: 1899, Chem. Ber., 32, p. 3109.CrossRefGoogle Scholar
  50. 46a.
    Aston J.G. and Laselle P.A.: 1934, J. Am. Chem. Soc, 56, p. 426.CrossRefGoogle Scholar
  51. 47.
    Kaufmann A. and Albertini A.: 1909, Chem. Ber., 42, p. 3776.CrossRefGoogle Scholar
  52. 47a.
    Kaufmann A. and Widmer A.: 1911, Chem. Ber., 44, p. 2058.CrossRefGoogle Scholar
  53. 47b.
    Kaufmann A.: 1918, Chem. Ber., 51, p. 116.CrossRefGoogle Scholar
  54. 48.
    Kosower E.M.: 1956, J. Am. Chem. Soc, 78, p. 3497.CrossRefGoogle Scholar
  55. 49.
    Pearson R.G.: 1963, J. Am. Chem. Soc., 85, p. 3533.CrossRefGoogle Scholar
  56. 49a.
    Pearson R.G.: 1973, Hard and Soft Acids and Bases, Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
  57. 50.
    Mulliken R.S.: 1934, J. Chem. Phys. 2, p. 782.CrossRefGoogle Scholar
  58. 50a.
    Mulliken R.S.: 1934, J. Chem. Phys. 1935, ibid, 3, p. 573.CrossRefGoogle Scholar
  59. 51.
    Cade P.E.: 1967, J. Chem. Phys., 47, p. 2390.CrossRefGoogle Scholar
  60. 51a.
    Moffat J.B. and Popkie H.E.: 1970, J. of Mol. Structure, 6, p. 155.CrossRefGoogle Scholar
  61. 52.
    Minot C. and Trong Anh N.: 1975, Tetrahedron Letters, 45, p. 3905.CrossRefGoogle Scholar
  62. 52a.
    Bertran J., Rinaldi D. and Rivail J.L.: 1979, C.R. Acad. Sc. (Paris), 289C, p. 195.Google Scholar
  63. 52b.
    Bertran J., Oliva A., Rinaldi D. and Rivail J.L.: 1980, Nouveau J. de Chimie, 4, p. 209.Google Scholar
  64. 53.
    Vedeneyev V.I., Gurvich L.V., Kondratyev V.N., Medvedyev V.A. and Frankevich Y.L.: 1966, Bond Energies, Ionization Potentials and Electron Affinities, Arnold, London.Google Scholar
  65. 54.
    Klopman G. and Andreozzi P.: 1980, Theoret. Chim. Acta (Berlin), 55, p. 77.CrossRefGoogle Scholar
  66. 55.
    Arriau J., Dargelos A., Elgero J. and Katritzky A.R.: 1976, Bull. Soc. Chim. Belg., 85, p. 40.Google Scholar
  67. 56.
    Chalvet O., Constanciel R., Decoret C. and Royer J.: 1977, Bull. Soc. Chim. Belg., 86, p. 31.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • R. Constanciel
    • 1
    • 2
  1. 1.Centre de Mécanique Ondulatoire AppliquéeCNRSParisFrance
  2. 2.Université Pierre et Marie CurieParisFrance

Personalised recommendations