Skip to main content
  • 240 Accesses

Abstract

The curious fate that befell the Elephant’s Child on the slimy banks of the Limpopo River in Rudyard Kipling’s story reminds us that muddy sediments are as remarkable in their properties and behaviour as they are commonplace in a wide range of sedimentary environments. What is a muddy sediment? It must be one containing enough clay minerals to render it cohesive. In practice, the majority of muddy sediments are dominated by particles smaller in size than sand (Table 2.2). River and tidal muds contain numerous small fragments of rock-forming minerals other than the clays, and have an average particle size typically in the silt grade. It is only in caves, the oceans and deep lakes that true clays with an average particle size less than 2µm are to be found. Try chewing pieces of clay from these environments; the harsh gritty feel of the river and tidal deposits will soon convince you of their relative coarseness. Some muddy sediments even contain significant amounts of sand-sized and coarser debris, for example, many glacial tills and debris-flow deposits, and texturally may be neither silts nor clays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Readings

  • Allen, J. R. L. 1969. Erosional current marks of weakly cohesive mud beds. J. Sed. Petrol. 39, 607–23.

    Google Scholar 

  • Allen, J. R. L. 1971. Transverse erosional marks of mud and rock. Sed. Geol. 5, 167–385.

    Article  Google Scholar 

  • Allen, J. R. L. 1982. Sedimentary structures, Vol. I. Amsterdam: Elsevier.

    Google Scholar 

  • Baldwin, C. T. 1974. The control of mud crack patterns by small gastropod trails. J. Sed. Petrol. 44, 695–7.

    Google Scholar 

  • Beutelspacher, H. and H. W. van der Marel 1968. Atlas of electron microscopy of clay minerals and their admixtures. Elsevier: Amsterdam.

    Google Scholar 

  • Bloor, E. C. 1957. Plasticity–a critical survey. Trans. Br. Ceram. Soc. 56, 423–81.

    Google Scholar 

  • Brindley, G. W. and G. Brown 1980. Crystal structure of clay minerals and their x-ray identification Monograph Mineral Soc., no. 5.

    Google Scholar 

  • Corte, A. E. and A. Higashi 1964. Experimental research on. desiccation cracks in soil. Rep US Snow, Ice and Permafrost Res. Establ., no. 66.

    Google Scholar 

  • Donovan, R. N. and R. Archer 1975. Some sedimentological consequences of a fall in the level of Haweswater, Cumbria. Proc. Yorks. Geol. Soc. 40, 547–62.

    Article  Google Scholar 

  • Donovan, R. N. and R. J. Foster 1972. Subaqueous shrinkage cracks from the Caithness Flagstone Series (Middle Devonian) of northeast Scotland. J. Sed. Petrol. 42, 309–17.

    Google Scholar 

  • Gillott, J. E. 1968. Clay in engineering geology. Amsterdam: Elsevier.

    Google Scholar 

  • Grass, A. J. 1971. Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233–55.

    Article  Google Scholar 

  • Haines, W. B. 1923. The volume changes associated with variations of water content in soil. J. Agr. Sci. 13, 296–310.

    Article  Google Scholar 

  • Hamilton, E. L. 1971. Elastic properties of marine sediments. J. Geophys. Res. 76, 579–604.

    Article  Google Scholar 

  • Hamilton, E. L. 1979. Vp/Vs and Poisson’s ratios in marine sediments and rocks. J. Acoust. Soc. Am. 66, 1093–101.

    Article  Google Scholar 

  • Jaeger, J. C. 1956. Elasticity, fracture and flow. London: Methuen.

    Google Scholar 

  • Kues, B. S. and C. T. Siemers 1977. Control of mudcrack patterns by the infaunal bivalve, Pseudocyrena. J. Sed. Petrol. 47, 844–8.

    Google Scholar 

  • Lachenbruch, A. H. 1962. Mechanics of thermal contraction cracks and ice-wedge polygons. Spec. Pap. Geol. Soc. Am., no. 70.

    Google Scholar 

  • McCave, I. N. and D. J. P. Swift 1976. A physical model for the rate of deposition of fine-grained sediments in the deep sea. Bull. Geol. Soc. Am. 87, 541–6.

    Article  Google Scholar 

  • Mantz, P. A. 1978. Bedforms produced by fine, cohesionless, granular and flaky sediments under substantial water flows. Sedimentology 25, 83–103.

    Article  Google Scholar 

  • Migniot, C. 1968. Etudes proprietés physique de différents sédiments très fins et de leur comportement sous des actions hydrodynamiques. Houille Blanche 23, 591–620.

    Article  Google Scholar 

  • Mitchell, R. J. and A. R. Markell 1974. Flow-sliding in sensitive soils. Can. Geotechn. 11, 11–31.

    Article  Google Scholar 

  • Smalley, I. 1976. Factors relating to the landslide process in Canadian quickclays. Earth Surf. Processes 1, 163–72.

    Article  Google Scholar 

  • Smart, P. and N. K. Tovey 1981a. Electron microscopy of soils and sediments: techniques. Oxford: Clarendon Press.

    Google Scholar 

  • Smart, P. and N. K. Tovey 1981b. Electron microscopy of soils and sediments: examples. Oxford: Clarendon Press.

    Google Scholar 

  • Soleilhavoup, F. and H. Bertouille 1976. Figures de desiccation observées lors de crues de L’Oued à Laghouat (Sahara Septentrional). Rev. Géomorph. Dyn. 24 (3), 81–98.

    Google Scholar 

  • Tavenas, F., J. Y. Chagnon and P. La Rochelle 1971. The Saint-Jean Vianney landslide: observations and eyewitness accounts. Can. Geotechn. 8, 463–78.

    Article  Google Scholar 

  • Van Olphen, H. 1963. An introduction to clay colloid chemistry. New York: Interscience.

    Google Scholar 

  • Zabawa, C. F. 1978. Microstructure of agglomerated suspended sediments in northern Chesapeake Bay estuary. Science 202, 49–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 J.R.L. Allen

About this chapter

Cite this chapter

Allen, J.R.L. (1985). The banks of the Limpopo River. In: Principles of Physical Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9683-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9683-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9685-0

  • Online ISBN: 978-94-010-9683-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics