Skip to main content

The Plastome and Chloroplast Biogenesis

  • Chapter
Plant Molecular Biology

Part of the book series: Tertiary Level Biology ((TLB))

  • 108 Accesses

Abstract

The most important feature that distinguishes plants from animals is the possession of chloroplasts. These organelles are responsible for the generation of energy and reducing power used to fix CO2. They are also involved in the metabolism of nitrogen, sulphur, lipids, and some plant hormones. Questions concerning the origin, development, and function of chloroplasts have occupied plant scientists for much of the present century. It is now clear that these organelles arose during evolution by the development of an endosymbiotic relationship between free-living photosynthetic organisms and the ancestors of modern plant cells. Within the last 25 years we have moved from the discovery of chloroplast DNA to a complete description of the chloroplast genetic system using techniques of biochemistry and molecular biology. These studies have shown that the present-day chloroplasts are integrated harmoniously into the physiological and biochemical processes of plant cells and that this integration has involved the exchange of genetic information between different cell compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber, J. (1986) New organism for elucidating the origin of higher plant chloroplast. TIBS 11, 234.

    Google Scholar 

  • Blair, G.E. and Ellis, R.J. (1973) Protein synthesis in chloroplasts. 1. Light-driven synthesis of the large subunit of Fraction I protein by isolated pea chloroplasts. Biochim. Biophys. Acta 319, 223–234.

    Article  CAS  PubMed  Google Scholar 

  • Bogorad, L., Gubbins, E.J., Krebbers, E.T., Larrinua, I.M., Muskavitch, K.M.T., Rodermel, S.R. and Steinmetz, A. (1983) The organisation and expression of maize plastid genes. In Genetic Engineering: Applications to Agriculture, ed. L.D. Owens, Rowman and Allanheld, Ottawa, 35–53.

    Google Scholar 

  • Bohnert, H.J., Crouse, E.J. and Schmitt, J.M. (1982) Organisation and expression of plastid genomes. In Nucleic Acids and Proteins in Plants II. Structure, Biochemistry and Physiology of Nucleic Acids, eds. B. Parthier and D. Boulter, Springer Verlag, Berlin, Heidelberg, New York, 475–530.

    Chapter  Google Scholar 

  • Bottomley, W., Spencer, D. and Whitfeld, P.R. (1974) Protein synthesis in isolated spinach chloroplasts: Comparison of light-driven and ATP-driven synthesis. Arch. Biochem. Biophys 164, 120–124.

    Article  Google Scholar 

  • Criddle, R.S., Dau, B., Kleinkopf, G.E. and Huffaker, R.C. (1970) Differential synthesis of ribulose diphosphate carboxylase subunits. Biochim. Biophys. Res. Commun. 41, 621–627.

    Article  CAS  Google Scholar 

  • Dobberstein, B., Blobel, G. and Chua, N-H (1977) In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1, 5-bisphosphate carboxylase of Chlamydornonas reinhardtii. Proc. Natl. Acad. Sci USA 74, 1081–1085.

    Article  Google Scholar 

  • Dyer, T.A. (1982) RNA sequences. In Nucleic Acids and Proteins in Plants II. Structure, Biochemistry and Physiology of Nucleic Acids, eds. B. Parthier and D. Boulter, Springer Verlag, Berlin, Heidelberg and New York, 171–191.

    Chapter  Google Scholar 

  • Edwards, K. and Kossel, H. (1981) The rRNA operon from Zea mays chloroplasts: nucleotide sequences of 23S rDNA and its homology with E. coli 23S rDNA. Nucleic Acids Res. 9, 2853–2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, R.J. (1981) Chloroplast proteins: synthesis, transport and assembly. Ann. Rev. Plant Physiol. 32, 111–137.

    Article  CAS  Google Scholar 

  • Ellis, R.J. (1983) Mobile genes of chloroplasts and the promiscuity of DNA. Nature (London) 304, 308–309.

    Article  Google Scholar 

  • Grierson, D. (1982) RNA processing and other post-transcriptional modifications. In Nucleic Acids and Proteins in Plants II. Structure, Biochemistry and Physiology of Nucleic Acids, eds. B. Parthier and D. Boulter, Springer Verlag, Berlin, Heidelberg and New York, 192–223.

    Chapter  Google Scholar 

  • Grossman, A.R., Bartlett, S.G., Schmidt, G.W., Mullet, J.E. and Chua, N-H (1982) Optimal conditions for the post-translational uptake of proteins by isolated chloroplasts. In vitro synthesis and transport of plastocyanin, ferridoxin-NADP oxidoreductase and fructose 1, 6-bisphosphatase. J. biol. Chem. 257, 1558–1563.

    PubMed  CAS  Google Scholar 

  • Gruissem, W. and Zurawski, G. (1985) Analysis of promoter regions for the spinach chloroplast rbcL, atpB and pshA genes. EMBO J. 4, 3375–3383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heinhorst, S., Shively, J.M. (1983) Encoding of both subunits of ribulose 1, 5-bisphosphate carboxylase by organelle genome of Cyanophora paradoxa. Nature (London) 304, 373–374.

    Article  CAS  Google Scholar 

  • Highfield, P.E. and Ellis, R.J. (1978) Synthesis and transport of the small subunit of ribulose bisphosphate carboxylase. Nature (London) 271, 420–424.

    Article  CAS  Google Scholar 

  • Karlin-Neumann, G.A. and Tobin. E.M. (1986) Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework, EMBO J. 5, 9–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawashima, N. and Wildman, S.G. (1972) Studies on fraction 1 protein. IV Mode of inheritance of primary structure in relation to whether chloroplast or nuclear DNA contains the code for a chloroplast protein. Biochim. Biophys. Acta 262, 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Kolodner, R. and Tewari, K.K. (1975) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature (London) 256, 708–711.

    Article  CAS  Google Scholar 

  • Lyttleton, J.W. (1962) Isolation of ribosomes from spinach chloroplasts. Exp. Cell Res. 26, 312–317.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E., Kao, T.-H. and Wu, R. (1987) Rice chloroplast DNA molecules are heterogeneous as revealed by DNA sequences of a cluster of genes. Nucleic Acids Res. 15, 611–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullet, J.E. and Klein, R.R. (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels, EMBO J. 6, 1571–1579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohyama, K., Fukezawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S-I., Inokuchi, H. and Ozeki, H. (1986a) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature (London) 322, 572–574; (1986b) Plant Mol. Biol. Reporter 4, 149–175.

    Article  Google Scholar 

  • Ohyama, K., Kohchi, T., Sano, T. and Yamada, Y. (1988) Newly identified groups of genes in chloroplasts. TIBS 13, 19–22.

    PubMed  CAS  Google Scholar 

  • Ris, H. and Plaut, W. (1962) The ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J. Cell. Biol. 13, 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K, Ohto, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. and Sugiura, M. (1986a) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organisation and expression. EMBO J 5, 2043–2049; (19866) The complete nucleotide sequence of the tobacco chloroplast genome. Plant. Mol. Biol. Reporter 4, 111–147.

    Article  CAS  Google Scholar 

  • Schwartz, Z. and Kossel, H. (1980) The primary structure of 16S rDNA from Zea mays chloroplasts is homologous with E. coli 16S rRNA. Nature (London) 283, 739–742.

    Article  Google Scholar 

  • Scott, N.S. and Smillie, R.M. (1967) Evidence for the direction of chloroplast ribosomal RNA synthesis by chloroplast DNA. Biochem. Biophys. Res. Comm. 28, 598–603.

    Article  CAS  PubMed  Google Scholar 

  • Scott, N.S. and Possingham, J.V. (1982) Leaf development. In The Molecular Biology of Plant Development, eds. H. Smith and D. Grierson, Blackwell, Oxford, pp. 223–255.

    Google Scholar 

  • Takaiwa, F. and Sugiura, M. (1982) The complete nucleotide sequence of a 23S rRNA gene from tobacco chloroplasts. Eur. J. Biochem. 124, 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Tohdoh, N. and Sugiura, M. (1982) The complete nucleotide sequence of 16S ribosomal RNA gene from tobacco chloroplasts. Gene 17, 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Willey, D.L., Auffret, A.D. and Gray, J.C. (1984) Structure and topology of cytochrome f in pea chloroplast membranes. Cell 36, 555–562.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Chapman & Hall

About this chapter

Cite this chapter

Grierson, D., Covey, S.N. (1988). The Plastome and Chloroplast Biogenesis. In: Plant Molecular Biology. Tertiary Level Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9649-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9649-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0144-8

  • Online ISBN: 978-94-010-9649-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics