Skip to main content

Genetic engineering of plants for insect resistance

  • Chapter

Part of the Plant Biotechnology Series book series (PBS)

Abstract

Plants and insects have been co-evolving for at least 300 million years; during this time plant species have been under continuous selection pressure from herbivorous insect predators, and, in the absence of the ability to avoid predators by movement, have been forced to rely on physical and chemical defensive mechanisms. Physical mechanisms include the presence of hairs on the surfaces of plant tissues, spines, exuded gums and toughened surface layers, such as hardened seed coats. Chemical defensive mechanisms include all the cases where a plant metabolite present in the plant tissues is toxic to predators, or interferes with the normal growth and development of predators, or deters predators by its taste or smell (Norris and Kogan, 1980).

Keywords

  • Transgenic Plant
  • Trypsin Inhibitor
  • Transgenic Tobacco Plant
  • Insect Resistance
  • Chemical Insecticide

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus, T.A. (1954) A bacterial toxin paralysing silkworm larvae. Nature 173: 545.

    CrossRef  Google Scholar 

  • Applebaum, S.W. (1964) Physiological aspects of host specificity in the bruchidae. I. General considerations of developmental compatibility. J. Insect Physiol. 10: 783.

    CrossRef  Google Scholar 

  • Applebaum, S.W. and Guez, M. (1972) Comparative resistance of Phaseolus vulgaris beans to Callsobruchus chinesis and Acanthoscelides obtectus (Col. Bruchidae): the differential digestion of soluble heteropolysaccharide Entomol. Exp. App. 25: 64.

    Google Scholar 

  • Applebaum, S.W. and Konijn, A.M. (1966) The presence of a Tribolium-protease inhibitor in wheat. J. Insect Physiol. 12: 665.

    CrossRef  Google Scholar 

  • Barton, K.A., Whiteley, H.R. and Yang, N-S. (1987) Bacillus thuringiensis-endotoxin expressed in Nicotiano tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103.

    CrossRef  Google Scholar 

  • Baulcombe, D.C., Saunders, G.R., Bevan, M., Mayo, M.A. and Harrison, B.D. (1986) Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321: 446.

    CrossRef  Google Scholar 

  • Berardi, L.C. and Goldblatt, L.A. (1980) Gossypol. In Toxic Constituents of Plant Foodstuffs, 2nd edn., Liener, I.E. Academic Press, New York, 183.

    Google Scholar 

  • Birk, Y., Gertler, A. and Khalef, S. (1963) Separation of a Tribolium-protease inhibitor from soybeans on a calcium phosphate column. Biochim. Biophys. Acta 67: 326.

    CrossRef  Google Scholar 

  • Boughdad, A., Gillon, Y. and Gagnepain, C. (1986) Influence des tannins condenses due tegument de feves (Vicia faba) sur le developpement larvaire de Callosobruchus maculatus. Entomol. Exp. Appl. 42: 125.

    CrossRef  Google Scholar 

  • Boulter, D., Edwards, G.A., Gatehouse, A.M.R., Gatehouse, J.A. and Hilder, V.A. (1990) Additive protective effects of incorporating two different higher plant derived insect resistance genes in transgenic tobacco plants Crop Protection, (in press).

    Google Scholar 

  • Broadway, R.M. and Duffy, S.S. (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol 32: 827.

    CrossRef  Google Scholar 

  • Broadway, R.M., Duffy, S.S., Pearce, G. and Ryan, C.A. (1986) Plant proteinase inhibitors: A defense against herbivorous insects? Ent. Exp. Appl. 41: 33.

    CrossRef  Google Scholar 

  • Brown, W.E., Takio, K., Titani, K. and Ryan, C.A. (1985) Wound-induced trypsin inhibitor in alfalfa leaves: Identity as a member of the Bowman-Birk inhibitor family. Biochemistry 24: 2105.

    CrossRef  Google Scholar 

  • Campos, F.A.P. and Richardson, M. (1983) The complete amino acid sequence of the bifunctional amylase/trypsin inhibitor from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn.) FEBS Lett. 152: 300.

    CrossRef  Google Scholar 

  • Christeller, J.T. and Shaw, B.D. (1989) The interaction of a range of serine proteinase inhibitors with bovine trypsin and Costelytra zealandica trypsin. Insect Biochem, 19: 233.

    CrossRef  Google Scholar 

  • Cromartie, W.J. (1981) The environmental control of insects using crop diversity. In Handbook ofPest Management in Agriculture, ed. Pimental, D. CRC Press, Boca Raton, FL, 223.

    Google Scholar 

  • Diaz, C.L., Melchers, L.S., Hooykaas, P.J.J., Lungtenberg, B.J.J. and Kijne, J.W. (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579.

    CrossRef  Google Scholar 

  • Dulmage, H.T. (1981) Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. In Microbial Control of Pests and Plant Diseases 1970–4980, ed. Burges, H.D. Academic Press, New York, 193.

    Google Scholar 

  • Ellis, J.R., Shirsat, A.H., Hepher, A., Yarwood, J.N., Gatehouse, J. A., Croy, R.R.D. and Boulter, D. (1988) Tissue specific expression of a pea legumin gene in seeds of Nicotiana plumbaginifolia Plant Mol. Biol. 10: 203.

    CrossRef  Google Scholar 

  • Evans, R.J., Pusztai, A., Watt, W.B. and Bauer, D.H. (1973) Isolation and properties of protein fractions from navy beans (Phaseolus vulgaris) which inhibit growth of rats, Biochim. Biophys. Acta 303: 175.

    Google Scholar 

  • Evans, S.V., Gatehouse, A.M.R. and Fellows, L.E. (1985) Detrimental effects of 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine in some tropical legume seeds on larvae of the bruchid Callosobruchus maculatus. Entomol. Exp. Appl. 37: 257.

    CrossRef  Google Scholar 

  • Fischhoff, D.A. (1989) Plants as delivery systems for biopesticides. Agbiotech 89, 373.

    Google Scholar 

  • Fischhoff, D.A., Bowdish K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G. and Fraley, R.T. (1987) Insect tolerant transgenic tomato plants. Biotechnology 5: 807.

    CrossRef  Google Scholar 

  • Fuchs, R., Macintosh, S., Kishore, G., Perlak, F., Pean, D., Stone, T., Sims, S., Hoffmann, N., Greenplate, J., Marrone, P. and Fischhoff, D.A. (1989) Enhanced expression/efficacy of transgenic plants which express the Bacillus thuringiensis insect control protein. Agbiotech 89, 210.

    Google Scholar 

  • Garcia-Olmedo, F., Salcedo, G., Sanchez-Monge, R., Gomez, L., Royo, J. and Carbonero, P. (1987) Plant proteinaceous inhibitors of proteinases and alpha-amylases. In Oxford Surveys of Plant Molecular and Cell Biology, vol. IV, ed. Miflin, B.J. Oxford, University Press, 275.

    Google Scholar 

  • Gaertner, F. (1989) Bacillus thuringiensis: Utility. Agbiotech 89, 354.

    Google Scholar 

  • Gatehouse, A.M.R. and Boulter, D. (1983) Assessment of the antimetabolic effects of trypsin inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus. J. Sci. Food Agric. 34: 345.

    CrossRef  Google Scholar 

  • Gatehouse, A.M.R., Gatehouse, J.A., Dobie, P., Kilminster, A.M. and Boulter, D. (1979) Biochemical basis of insect resistance in Vigna unguiculata. J. Sci. Food Agric. 30: 949.

    CrossRef  Google Scholar 

  • Gatehouse, A.M.R., Dewey, F.M., Dove, J., Fenton, K.A. and Pusztai, A. (1984) Effect of seed lectin from Phaeolus vulgaris on the development of larvae of Callosobruchus maculatus: mechanism of toxicity. J. Sci. Food Agric. 35: 373.

    CrossRef  Google Scholar 

  • Gatehouse, A.M.R., Butler, K.J., Fenton, K.A. and Gatehouse, J.A. (1985) Presence and partial characterisation of a major proteolytic enzyme in the larval gut of Callosobruchus maculatus. Entomol. Exp. Appl. 39: 279.

    CrossRef  Google Scholar 

  • Gatehouse, A.M.R., Fenton, K.A., Jepson, I. and Pavey, D.J. (1986) The effects of α-amylase inhibitors on insect storage pests; inhibition of a-amylase in vitro and effects on development in vivo. J. Sci. Food Agric. 37: 727.

    CrossRef  Google Scholar 

  • Gatehouse, A.M.R., Dobie, P., Hodges, R.J., Meik, J., Pusztai, A. and Boulter, D. (1987) Role of carbohydrates in insect resistance in Phaseolus vulgaris. J. Insect Physiol. 33: 843.

    CrossRef  Google Scholar 

  • Gatehouse, A.M.R., Shackley, S.J., Fenton, K.A., Bryden, J. and Pusztai, A. (1989) Mechanism of seed lectin tolerance by a major insect storage pest of Phaseolus vulgaris, Acanthoscelides obtectus. J. Sci. Food Agric. 47: 269.

    CrossRef  Google Scholar 

  • Gatehouse, A.M.R., Barbieri, L., Stirpe, F. and Croy, R.R.D. (1990) Effects of ribosome inactivating proteins on insect development—differences between Lepidoptera and Coleoptera. Entomol. Exp. Appl. (in press).

    Google Scholar 

  • Gatehouse, J.A., Bown, D., Evans, I.M., Gatehouse, L.N., Jobes, D., Preston, P., Croy, R.R.D. (1987) Sequence of the seed lectin gene from pea (Pisum sativum L.) Nucl. Acids Res. 15: 7642.

    CrossRef  Google Scholar 

  • Green, T.R. and Ryan, C.A. (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175: 776.

    CrossRef  Google Scholar 

  • Hamblin, J. and Kent, S.P. (1973) Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature New Biol. 245: 28.

    CrossRef  Google Scholar 

  • Hedin, P.A., Jenkins, J.N., Collum, D.H., White, W.H. and Parrot, W.L. (1983) In Plant Resistance to Insects, ed. Hedin, P.A. American Chemical Society, Washington DC, 347.

    CrossRef  Google Scholar 

  • Heinrichs, E.A. and Mochida, O. (1983) From secondary to major pest status: The case of insecticide-induced rice brown planthopper, Nilaparvata lugens resurgence. Proc. XV Pacific Science Congress, New Zealand.

    Google Scholar 

  • Hilder, V.A. and Gatehouse, A.M.R. (1990) The phenotypic cost to plants of an ‘extra’ gene (submitted).

    Google Scholar 

  • Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, F. and Boulter, D. (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160.

    CrossRef  Google Scholar 

  • Hilder, V.A., Barker, R.F., Samour, R.A., Gatehouse, A.M.R., Gatehouse, J.A. and Boulter, D. (1989) Protein and cDNA sequences of Bowman-Birk protease inhibitors from the cowpea (Vigna unguiculata Walp.) Plant Mol. Biol. 13, 701.

    CrossRef  Google Scholar 

  • Hilder, V.A., Gatehouse, A.M.R. and Hughes, S. (1990) Characterisation of transgenic tobacco plants containing cowpea trypsin inhibitor genes (submitted).

    Google Scholar 

  • Hill, D.S. (1983) In Agricultural Insect pests of the Tropics and their Control. Cambridge, University Press, 746.

    Google Scholar 

  • Hill, D.S. (1987) In Agricultural Insect Pests of Temperature Regions and their Control. Cambridge, University Press, 659.

    Google Scholar 

  • Ishimoto, M. and Kitamura, K. (1988) Identification of the growth inhibitor on azuki bean weevil in kidney bean (Phaseolus vulgaris L.). Japan J. Breed. 38, 367.

    Google Scholar 

  • Janzen, D.H., Juster, H.B. and Liener, I.E. (1976) Insecticidal action of the phytohemagglutinin in black bean on a bruchid beetle. Science 192: 795.

    CrossRef  Google Scholar 

  • Jayne-Williams, D.J. and Burgess, C.D. (1974) Further observations on the toxicity of navy beans (Phaseolus vulgaris) for Japanese quail (Coturnix coturnix japonica). J. Appl. Bacteriol. 37: 149.

    CrossRef  Google Scholar 

  • Johnson, R., Narvaez, J., An, G. and Ryan, C.A. (1990) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc. Natl Acad. Sci. USA 86, 9871.

    CrossRef  Google Scholar 

  • King, T.P., Pusztai, A. and Clarke, E.M.W. (1980a) Immunocytochemical localisation of injested kidney bean (Phaseolus vulgaris) lectins in rat gut. Histochem. J. 12: 201.

    CrossRef  Google Scholar 

  • King, T.P., Pusztai, A. and Clarke, E.M.W. (1980b) Kidney bean (Phaseolus vulgaris) lectin-induced lesions in rat small intestine. 3. Ultrastructural studies. J. Comp. Pathol. 92: 357.

    CrossRef  Google Scholar 

  • Kitch, L.W. and Murdoch, L.L. (1986) Partial characterization of a major midgut thiol proteinase from larvae of Callosobruchus maculatus (F.). Arch. Insect Biochem. Physiol. 3: 561.

    CrossRef  Google Scholar 

  • Kunitz, M. (1945) Crystallization of a trypsin inhibitor from soybean. Science 101: 668.

    CrossRef  Google Scholar 

  • Lipke, H., Fraenkel, G.S. and Liener, I.E. (1954) Effect of soybean inhibitors on growth of Tribolium confusum. J. Agric. Food Chem. 2: 410.

    CrossRef  Google Scholar 

  • Lotan, R., Cacan, R., Cacan, M., Debray, H., Carter, W.C. and Sharon, N. (1975) On the presence of two types of subunit in soybean agglutinin. FEBS Lett. 57: 100.

    CrossRef  Google Scholar 

  • Mann, J. (1987) Secondary Metabolism, 2nd edn. Oxford, University Press.

    Google Scholar 

  • Marchai, P. (1908) The utilization of auxiliary entomophagus insects in the struggle against insects injurious to agriculture. Pop. Sci. Mon. 72: 352.

    Google Scholar 

  • Metcalf, R.L. (1986) The ecology of insecticides and the chemical control of insects. In Ecological Theory and Integrated Pest Management Practice, ed. Kogan, M. John Wiley & Sons, New York, 251.

    Google Scholar 

  • Mickel, C.E. and Standish, J. (1947) Susceptibility of processed soy flour and soy grits in storage to attack by Tribolium castaneum (Herbst). Univ. Minn. Agr. Exp. Sta. Tech. Bull. 178: 1.

    Google Scholar 

  • Nash, R.J., Fenton, K.A., Gatehouse, A.M.R. and Bell, E.A. (1986) Effects of the plant alkaloid castanospermine as an antimetabolite of storage pests. Entomol. Exp. Appl. 42: 71.

    CrossRef  Google Scholar 

  • Norris, D.M. and Kogan, M. (1980) Biochemical and morphological bases of resistance. In Breeding Plants Resistant to Insects, eds. Maxwell, F.G. and Jennings, P.R. John Wiley & Sons, London.

    Google Scholar 

  • Oka, I.N. and Pimentel, D. (1976) Herbicide (2,4-D) increases insect pathogen pests on corn. Science 193: 239.

    CrossRef  Google Scholar 

  • Peterson, V. (1984) In The Natural Food Catalogue 69. McDonald, London.

    Google Scholar 

  • Pimental, D., Shoemaker, C., LaDue, E.L., Rovinsky, R.B. and Russell, N.P. (1977) Alternatives for reducing insecticides on cotton and corn: economic and environmental impact. Environ. Res. Lab. Off. Res. Develop., EPA, Athens, G.A., 145.

    Google Scholar 

  • Pusztai, A., Clarke, E.M.W. and King, T.P. (1979) The nutritional toxicity of Phaseolous vulgaris. Nutr. Soc. 38: 115.

    CrossRef  Google Scholar 

  • Read, J.W. and Haas, L.W. (1938) Studies on the baking quality of flour as affected by certain enzyme actions V. Further studies concerning potassium bromate and enzyme activity. Cereal Chem. 15: 59.

    Google Scholar 

  • Redden, R.J., Dobie, P. and Gatehouse, A.M.R. (1983) The inheritance of seed resistance to Callosobruchus maculatus F. in cowpea (Vigna unguiculata L. Walp.). I. Analysis of parental, F1, F2, F3 and backcross seed generations. Aust. J. Agric. Res 34: 681.

    CrossRef  Google Scholar 

  • Richardson, M. (1977) The proteinase inhibitors of plants and microorganisms. Phytochemistry 16: 159.

    CrossRef  Google Scholar 

  • Richardson, M. (1981) Protein inhibitors of enzymes. Food Chem. 6: 235.

    CrossRef  Google Scholar 

  • Rosenthal, G.A., Dahlman, D.L. and Janzen, D.H. (1976) A novel means for dealing with L-canavanine, a toxic metabolite, Science 192: 256.

    CrossRef  Google Scholar 

  • Rosenthal, G.A., Dahlman, D.L. and Janzen, D.H. (1978) L-canaline detoxification: a seed predator’s biochemical mechanism, Science 202: 528.

    CrossRef  Google Scholar 

  • Ryan, C.A. (1983) In Variable Plants and Herbivores in Natural and Managed Systems, eds. Denno, R.F. and McClure, M.S. Academic Press, New York, 43.

    Google Scholar 

  • Ryan, C.A. (1985) In The Biochemistry of Plants: a Comprehensive Treatise, vol. 6, ed. Marcus, A. Academic Press, New York 351.

    Google Scholar 

  • Ryan, C.A. (1989) Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores. Bio Essays 10: 21.

    Google Scholar 

  • Sacchi, V.F., Parenti, P., Hanozet, G.M., Giordanda, B., Lutly, P. and Wolfersberger, M.G. (1986) Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 204: 213.

    CrossRef  Google Scholar 

  • Shukle, R.H. and Murdoch, L.L. (1983) Lipoxygenase, trypsin inhibitor, and lectin from soybeans: effects on larval growth of Manduca sexta (Lepidoptera: Sphingidae). Environ. Entomol. 12: 787.

    Google Scholar 

  • Simons, P. (1981) The potato bites back. New Scientist 1267: 470.

    Google Scholar 

  • Singh, S.R. (1978) Resistance to insect pests of cowpea in Nigeria. In: Pests of Grain legumes: Ecology and Control, eds. Singh, S.R., Van Emden, H.F. and Taylor, T.A. Academic Press, New York, 267.

    Google Scholar 

  • Steffens, R., Fox, F.R. and Kassel, B. (1978) Effect of trypsin inhibitors on growth and metamorphosis of corn borer larvae Ostrinia nubilalis (Hubner). J. Agric. Food Chem. 26:170.

    CrossRef  Google Scholar 

  • Strong, D.R. (1979) Biogeographic dynamics of insect-host plant communities. Ann. Rev. Entomol. 24: 89.

    CrossRef  Google Scholar 

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M.D., Dean, C., Zabeau, M., Van Montagu, M.V. and Leemans, J. (1987) Transgenic plants protected from insect attack. Nature 328: 33.

    CrossRef  Google Scholar 

  • Veiten, J., Veiten, L., Hains, R. and Schell, J. (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J. 3: 2723.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Blackie & Son Ltd

About this chapter

Cite this chapter

Gatehouse, J.A., Hilder, V.A., Gatehouse, A.M.R. (1991). Genetic engineering of plants for insect resistance. In: Grierson, D. (eds) Plant Genetic Engineering. Plant Biotechnology Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9646-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9646-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9648-5

  • Online ISBN: 978-94-010-9646-1

  • eBook Packages: Springer Book Archive