Nebular Compositions, Element Building, and Stellar Evolution

  • Lawrence H. Aller
Part of the Astrophysics and Space Science Library book series (ASSL, volume 112)


The relationship between chemical abundances in gaseous nebulae and element building processes in stars remains one of the most challenging problems in astrophysics. There are several aspects that merit examination:
  1. 1)

    The linkage between nucleogenesis and nebular chemical compositions is best defined for planetaries and a few other objects where we study the ejecta from a single star. How can theories of stellar evolution help us understand these objects?

  2. 2)

    Although a large fraction of the stellar population probably evolves into planetaries, the role of very massive O, of, and Wolf-Rayet (WR) stars is extremely important because these objects can return highly processed material, either through a stellar wind, through demise as a supernova, or both, and have a possible role in the origin of cosmic rays.

  3. 3)

    In particular, supernovae (although few in number) have a great effect on the chemistry of the ambient interstellar medium. Especially enlightening are a few objects such as Cas A where the chemical composition of the individual fragments of the detonation can be studied.



Interstellar Medium Massive Star Mass Loss Rate Stellar Wind Stellar Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Stellar Winds With Application to a Star’s Evolutionary History

  1. In Chapter 10, stellar winds were discussed from the point of view of mechanics and radiative properties of surrounding shells and interstellar bubbles. They also play important roles in stellar evolution. This is a very active field for which we can give only a few references. The fundamental paper is that by Deutsch, A.J.., 1956, Ap. J., 125, 210.ADSCrossRefGoogle Scholar
  2. Useful review articles may be found in Ann. Rev. Astron. Astrophys. by Conti, P., 1978, 16, 371ADSCrossRefGoogle Scholar
  3. Cassinelli, J.P., 1979, 17, 275Google Scholar
  4. Lamers, H., 1983, p. 53, Diffuse Matter in Galaxies, ed. J. Audouze et al., Dordrecht, Reidel Publ. Co.,Google Scholar
  5. Garmany, C.D., Olson, G.L., Conti, P.S., van Steenberg, M.E., 1981, Ap. J., 250, 660.ADSCrossRefGoogle Scholar
  6. Late Stages of Stellar Evolution and the Origin of Planetary Nebulae.Google Scholar
  7. Important contributions were made by: B. Paczynski, 1970, Acta Astronomica, 20, 47, 287ADSGoogle Scholar
  8. B. Paczynski 1971, Acta Astronomica 21, 417ADSGoogle Scholar
  9. B. Paczynski 1973, Acta Astronomica 23, 191ADSGoogle Scholar
  10. SchwarzschiId, M., Harm, R., 1967, Ap. J., 150, 961.ADSCrossRefGoogle Scholar
  11. Kaler, J.B. 1981, Ap. J., 250. L31ADSCrossRefGoogle Scholar
  12. Kaler, J.B 1983, Ap. J., 271, 188.ADSCrossRefGoogle Scholar
  13. See I.A.U. Symposium No. 103, 1983.Google Scholar
  14. Scalo J., and Ulrich, R.K., 1973, Ap. J., 183, 151 (plume mixing).ADSCrossRefGoogle Scholar
  15. Cameron, A.G.W., and Fowler, W.A., 1971, Ap. J., 164, 11 (Li enhancement).ADSCrossRefGoogle Scholar
  16. Becker, S.A., and Iben, I. 1979, Ap. J., 232, 831ADSCrossRefGoogle Scholar
  17. Becker, S.A., and Iben, I.1980, Ap. J.,237, 111.ADSCrossRefGoogle Scholar
  18. Wood, P.R., and Faulkner, D.J. 1984, I.A.U. Symp. No. 105, Reidel.Google Scholar
  19. Iben, I. 1982, Ap. J., 260, 821.ADSCrossRefGoogle Scholar
  20. Iben, I., Kaler, J.B., Truran, J.W., and Renzini, A. 1983, Ap. J., in press.Google Scholar
  21. Iben, I., and Renzini, A. 1983, Ann. Rev. Astron. Astrophys., 21, 271, and references therein cited.ADSCrossRefGoogle Scholar
  22. Renzini, A., and Voli, M. 1981, Astron. Astrophys., 94, 175.ADSGoogle Scholar
  23. Peimbert, M. 1981, Physical Processes in Red Giants, ed. I. Iben and A. Renzini, Dordrecht, Reidel Publ. Co., p. 409.Google Scholar
  24. Schonberner, D. 1981, Astron. Astrophys., 103, 119.ADSGoogle Scholar
  25. Kwok, S. 1980, Ap. J., 236, 592.ADSCrossRefGoogle Scholar

Early Stages of Planetary Nebula Development

  1. For a general review of observations of giant and supergiant stars relevant to the formation of PN, see: Zuckerman, B. 1980, Ann. Rev. Astron. Astrophys., 18, 263, and references cited therein. V1016 Cygni, HM Sge, and HBV 475, which are probably protoplanetary objects, have been studied by many observersGoogle Scholar
  2. See Nussbaumer, H., and Schild, H., 1981, Astron. Astrophys., 101, 118ADSGoogle Scholar
  3. Feibelman, W.A., 1982, Ap. J., 258, 548, and references cited therein.ADSCrossRefGoogle Scholar
  4. Variability in the Spectrum of a Planetary Nebula was first established definitely for IC 4997. See Liller, W., and Aller, L.H., 1957, Sky and Telescope, 16, 222Google Scholar
  5. Liller, W., and Aller, L.H., 1966, M.N.R.A.S., 132. 337.ADSGoogle Scholar
  6. Rapid variations in the [O III]/Hγ ratio were observed by A. Purgathofer and M. Stoll, 1981, Astron. Astrophys., 99, 218.ADSGoogle Scholar
  7. See also W. Feibelman, 1982, Ap. J., 258, 562.ADSCrossRefGoogle Scholar
  8. Evolution of Chemical Abundances in Massive Stars is discussed by Maeder, A., 1981, Astron. Astrophys., 99, 97ADSGoogle Scholar
  9. Maeder, A., 1981, Astron. Astrophys., 101. 385ADSGoogle Scholar
  10. Maeder, A., 1981, Astron. Astrophys., 102, 401ADSGoogle Scholar
  11. Maeder, A., 1982, Astron. Astrophys., 105, 149, and references therein quoted.ADSGoogle Scholar
  12. Ejecta of η Carinae: Davidson, K., Walborn, N., and Gull, T., 1982, Ap. J., 254, L47.ADSCrossRefGoogle Scholar
  13. For a discussion of novae see: Gallagher, J.S., and Starrfield, S., 1978, Ann. Rev. Astron. Astrophys., 16, 171.ADSCrossRefGoogle Scholar
  14. Nitrogen-Rich of Stars: Walborn, N.R., 1976, Ap. J., 204, L17ADSCrossRefGoogle Scholar
  15. Walborn, N.R., 1976, Ap. J., 205, 419ADSCrossRefGoogle Scholar
  16. Walborn, N.R., 1982, Ap. J., 256, 452, and references therein cited.ADSCrossRefGoogle Scholar
  17. Current views on Wolf-Rayet stars are summarized in Wolf-Rayet Stars: Observations, Physics, Evolution, ed. de Loore, C.W.H., and Willis, A.J., Dordrecht, Reidel Publ. Co., 1982.Google Scholar
  18. A good overall summary of elemental origins is given by: Trimble, V. Reviews of Modern Physics, 54, 1183, 1982ADSCrossRefGoogle Scholar
  19. Trimble, V. 1983 Reviews of Modern Physics 55, 511, 1983. Interesting accounts of relations between stellar compositions and element-building scenarios are given in papers by Lambert and his coworkers.ADSCrossRefGoogle Scholar
  20. See, e.g., Clegg, R., Lambert, D., and Tomkin, J., 1981, Ap. J., 250, 262.ADSCrossRefGoogle Scholar


  1. Some possible characteristics of presupernovae are discussed by Jura and Morris, 1982, Ap. J., 251, 181.ADSCrossRefGoogle Scholar
  2. The chemical compositions of young supernova remnants (SNR) have been successfully investigated for a number of objects. A number of examples: The Casseopeia A Supernova remnant was first studied by W. Baade and R. Minkowski, 1954, Ap. J., 119, 206.ADSCrossRefGoogle Scholar
  3. Analysis and discussion may be found in the following papers and references cited therein: Peimbert, M., 1971, Ap. J., 170, 261ADSCrossRefGoogle Scholar
  4. Peimbert, M., and van den Bergh, S., 1971, Ap. J., 167, 223ADSCrossRefGoogle Scholar
  5. Chavalier, R.A., and Kirshner, R.P., 1977, Ap. J., 218, 142ADSCrossRefGoogle Scholar
  6. Chavalier, R.A., and Kirshner, R.P 1978, 219, 931Google Scholar
  7. Chavalier, R.A., and Kirshner, R.P 1979, 233, 154.Google Scholar
  8. Crab Nebula Composition: Davidson, K., Walborn, N., and Gull, T., 1982, Ap. J., 254, L47.ADSCrossRefGoogle Scholar
  9. For recent X-ray studies of the spectra of a number of young SNR ejecta, see:Google Scholar
  10. Tycho’s supernova, Becker, R.H., et al., 1980, Ap. J. Letters, 235, L5;ADSCrossRefGoogle Scholar
  11. Kepler’s supernova, Becker, R.H., et al., 1980, Ap. J., Letters, 237. L77.ADSCrossRefGoogle Scholar
  12. Puppis A, Winkler, P.F., et al., 1981, Ap. J. Letters, 245, 574.CrossRefGoogle Scholar
  13. G292.0 + 1.8, Clark, J.H., et al., 1981 M.N.R.A.S., 193, 129.ADSGoogle Scholar
  14. Chemical Composition Variations Within and Chemical Evolution of Galaxies are topics which have received much attention in recent years. The following articles in Annual Reviews of Astronomy and Astrophysics, and references cited therein, are useful: van den Bergh S., 1975, 13, 217ADSCrossRefGoogle Scholar
  15. Peimbert, M., 1975, 13, 113Google Scholar
  16. Audouze, J., and Tinsley, B.M., 1976, 14, 43Google Scholar
  17. Pagel, B.E.J., and Edmonds, M.G., 1981, 19, 77.Google Scholar
  18. See also: Pagel, B.E.J., 1979, Stars and Stellar Systems ed. B.E. Westerlund, Dordrecht, Reidel Publ. Co.Google Scholar
  19. Searle, L., and Sargent, W.L.W., 1972, Ap. J., 173, 25ADSCrossRefGoogle Scholar
  20. Edmunds, M.G., 1977, I.A.U. Colloquium No. 45, p. 67Google Scholar
  21. Hunter, D.A., Gallagher, J.S., and Rautenkranz, D., 1982, Ap. J. Suppl., 49, 53ADSCrossRefGoogle Scholar
  22. Tinsley, B.M., 1980, Fundamentals of Cosmic Physics, 5, 287ADSGoogle Scholar
  23. Audouze, J., 1983, Diffuse Nebulae in Galaxies, p. 95, ed. Audouze et al., Reidel Publ Co.Google Scholar
  24. The importance of the primordial helium abundance in Big Bang cosmology is discussed by: Yang, J., Schramm, D.N., Steigman, G., and Rood, R.T., 1979, Ap. J., 227, 697ADSCrossRefGoogle Scholar
  25. Olive, K.A., Schramm, D.N., Steigman, G., Turner, M., and Yang, J., 1981, Ap. J., 246, 557.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • Lawrence H. Aller
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations