Advertisement

Chemical Compositions of Gaseous Nebulae

  • Lawrence H. Aller
Chapter
  • 110 Downloads
Part of the Astrophysics and Space Science Library book series (ASSL, volume 112)

Abstract

Ascertainment of the chemical compositions of gaseous nebulae has been a goal of many investigations since the pioneering studies of Bowen and Wyse (1939) and of Wyse (1942). At that epoch it was widely believed that the elemental abundances in all stars and nebulae were essentially the same. The concept of chemical evolution in galaxies was yet to be introduced.

Keywords

Galactic Center Population Type Planetary Nebula Recombination Line Magellanic Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Table 11–3

  1. 1.
    Peimbert, M., and Serrano, A. 1980, Rev, Mexicana Astron, and Astrophys., 5, 9 (r = 10 kpc).Google Scholar
  2. 2.
    Kaler, J.B. 1978, Ap. J., 226, 947.ADSCrossRefGoogle Scholar
  3. 3.
    Barker, T. 1978, Ap. J., 221, 145, Group I.ADSCrossRefGoogle Scholar
  4. 4.
    Barker, T. 1978, Ap. J., 221, 145, Group II.ADSCrossRefGoogle Scholar
  5. 5.
    Present survey, r = 10 kpc.Google Scholar
  6. 6.
    French, H. 1980, Bull. Amer. Astr. Soc., 12, 842; IAU Symposium No. 103, 1983.ADSGoogle Scholar
  7. 7.
    Aller, L.H., and Czyzak, S.J. 1981, Proc. Natl. Acad. Sci. USA, 78, 5266.ADSCrossRefGoogle Scholar
  8. 8.
    Beck, S.C., Lacy, J.H., Townes, C.H., Aller, L.H., Geballe, T.R., and Baas, F. 1981, Ap. J., 249, 592.ADSCrossRefGoogle Scholar
  9. 9.
    Dinerstein, H. 1980, Ap. J., 237, 486.ADSCrossRefGoogle Scholar
  10. 10.
    Natta, A., Panagia, N., and Preite-Martinez, A. 1980, Ap. J., 242, 596.ADSCrossRefGoogle Scholar
  11. 11.
    Kaler, J.B. 1978, Ap. J., 225, 527.ADSCrossRefGoogle Scholar
  12. 12.
    Kaler, J.B. 1980, Ap. J., 239, 78.ADSCrossRefGoogle Scholar
  13. 13.
    Aller, L.H. 1978, Proc. Astron. Soc. Australia, 3, 213; IAU Symposium No. 76, 225.ADSGoogle Scholar

References to Table 11–4

  1. 1.
    Barker, T. 1980, Ap. J., 237, 482 (see also I.A.U. Symposium No. 103, 1983).Google Scholar
  2. 2.
    Aldrovandi, S.M.V. 1980, Ap. Space Sci., 71, 393.ADSGoogle Scholar
  3. 3.
    Peimbert, M., and Torres-Peimbert, S. 1979, Rev. Mex. Astr. Ap., 4, 341. ADSGoogle Scholar
  4. 4.
    Hawley, S.A., and Miller, J.S. 1977, Ap. J., 212. 94.ADSCrossRefGoogle Scholar
  5. 5.
    Adopted from data in Table 3.Google Scholar

References to Table 11–5

  1. M33: Kwitter and Aller (1981), theoretical models.Google Scholar
  2. M101: Sedwick and Aller (1981), theoretical models.Google Scholar
  3. Rayo et al. (1982) derive a smaller N/O and Ne/O ratio but comparable S/O and Ar/O ratios.Google Scholar
  4. Magellanic Clouds: The carbon abundance is from Dufour, Shields, and Talbot (1982). For the other elements we tabulate mean values from this work and from Aller, Keyes, and Czyzak (1977). Theoretical models are employed here to derive IGFs. Extensive investigations were carried out previously by Dufour (1975), the Peimberts (1974–1976), Aller et al. (1974), Dufour and Harlow (1977), and by Pagel et al. (1978).Google Scholar
  5. Galactic Sources: Planetary Nebulae (Tables 3 and 4); Sun (see Table 3).Google Scholar
  6. Orion Nebula: Data by the Peimberts (1977) as revised and extended by Dufour et al. (1982); H II regions (at rgal = 10 kpc), Shaver et al. (1983).Google Scholar

References to Table 11–6

  1. 1.
    Hawley, S.A. 1978, Ap. J., 224, 417.ADSCrossRefGoogle Scholar
  2. 2.
    Peimbert, M., Torres-Peimbert, S., and Rayo, J.F. 1978, Ap. J., 220, 516.ADSCrossRefGoogle Scholar
  3. 3.
    Talent, D.L., and Dufour, R.J. 1979, Ap. J., 233, 888.ADSCrossRefGoogle Scholar
  4. 4.
    Shaver, P.A., McGee, R.X., Newton, L.M., Danks, A.C., and Pottasch, S.R. 1984, M.N.R.A.S., in press.Google Scholar

References to Table 11–6

  1. Computed from data by: Wannier, P.G. 1980, Ann. Rev. Astron. Astrophys., 18. 399.ADSCrossRefGoogle Scholar

The pioneering studies of the chemical compositions of gaseous nebulae were those of:

  1. Bowen, I.S., and Wyse, A.B. 1939, Lick Observatory Bulletin, 19. 1ADSGoogle Scholar
  2. Wyse, A.B. 1942, Ap. J., 95. 356.ADSCrossRefGoogle Scholar
  3. The first detailed investigation explicitly employing modern-type expressions for rates of atomic processes was contained in the last paper of the Harvard series on Physical Processes in Gaseous Nebulae, 1945, Ap. J., 102. 239, but substantial progress was possible only with improved observational data and Seaton’s collisional cross sections (Chapter 5), see, e.g., 1954, Ap. J., 120. 401 (where importance of density fluctuations in NGC 7027 was emphasized); 1957, Ap. J., 125. 84.Google Scholar
  4. The influence of small-scale temperature fluctuations on nebular spectra was examined by M. Peimbert, 1967, Ap. J., 150. 825.ADSCrossRefGoogle Scholar
  5. Examples of ionization correction formulae are given by: Peimbert, M., and Costero, R., 1969, Bol. Obs. Tonanzintla y Tacubaya, 5,, 3ADSGoogle Scholar
  6. Barker, T., 1983, Ap. J., 267. 630ADSCrossRefGoogle Scholar
  7. French, H., 1981, Ap. J., 246. 434ADSCrossRefGoogle Scholar
  8. Stasiiiska, G., 1978, Astron. Astrophys., 66. 257.ADSGoogle Scholar
  9. Use of theoretical models in analyses of H II regions is discussed, e.g., by Hawley, S.A., and Grandi S.A., 1978, P.A.S.P., 90, 125ADSCrossRefGoogle Scholar
  10. Stasinska, G., 1978, Astron. Astrophys. Suppl., 32. 429ADSGoogle Scholar
  11. Stasinska, G., 1980, Astron. Astrophys., 84. 320 (see Chapter 7).ADSGoogle Scholar

Discussions of compositions of planetary nebulae are given in the references to Tables 1, 3, and 4, in IAU Symposia No. 76, 1978, and No. 103, 1983. See also:

  1. Torres-Peimbert, S., and Peimbert, M., 1977, Rev. Mex. Astron. Astrofis., 2, 181.ADSGoogle Scholar
  2. Barker, T. 1978, Ap. J., 220. 193.ADSCrossRefGoogle Scholar
  3. Kaler, J.B. 1970, Ap. J., 160. 887ADSCrossRefGoogle Scholar
  4. Kaler, J.B. 1970, Ap. J., 226. 947ADSCrossRefGoogle Scholar
  5. Kaler, J.B.1979, Ap. J., 228. 163ADSCrossRefGoogle Scholar
  6. Kaler, J.B.1981, Ap. J., 244. 54ADSCrossRefGoogle Scholar
  7. Kaler, J.B. 1981, Ap. J., 249. 201.ADSCrossRefGoogle Scholar
  8. Boeshaar, G.O. 1975, Ap. J., 195. 695.ADSCrossRefGoogle Scholar
  9. Webster, L.B. 1976, M.N.R.A.S., 174. 513.ADSGoogle Scholar
  10. Price, C.M. 1981, Ap. J., 247. 540.ADSCrossRefGoogle Scholar
  11. Aller, L.H., and Czyzak, S.J. 1983, Ap. J. Suppl., 51. 211.ADSCrossRefGoogle Scholar
  12. Direct evidence for nuclear processed material is found in the shell ejected from Abell 30. See:Google Scholar
  13. Hazard, C., Terlevich, R., Morton, D.C., Sargent, W.L.W., and Ferland, G. 1980, Nature, 285. 453.ADSCrossRefGoogle Scholar
  14. Jacoby G.H., and Ford, H.G. 1983, Ap. J., 266. 298.ADSCrossRefGoogle Scholar

Entrapment of certain elements in solid grains can be an important factor in influencing the composition of the gaseous phase. In the context of planetary nebulae, a basic paper is:

  1. Shields, G.A. 1978, Ap. J., 219, 559.ADSCrossRefGoogle Scholar

A Few Examples of Analyses of Individual Objects

  1. NGC 7662: Péquignot, D. 1980, Astron. Astrophys., 83, 52.ADSGoogle Scholar
  2. Harrington, J.P., Seaton, M.J., Adams, S., and Lutz, J.H. 1982, M.N.R.A.S., 199, 517.ADSGoogle Scholar
  3. IC 3568: Harrington, J.P., and Feibelman, W.A. 1983, Ap. J., 265, 258.ADSCrossRefGoogle Scholar
  4. NGC 7009: Perinotto, M., and Benvenuti, P. 1981, Astron. Astrophys., 101, 88.ADSGoogle Scholar
  5. NGC 7027: Shields, G.A. 1978, Ap. J., 219, 565.ADSCrossRefGoogle Scholar
  6. Perinotto, M., Panagia, N., and Benevuti, P. 1980, Astron. Astrophys., 85, 332.ADSGoogle Scholar
  7. Pequignot, D., and Stasinska, G. 1980, Astron. Astrophys., 81, 121.ADSGoogle Scholar
  8. NGC 2440: Shields, G.A., Aller, L.H., Keyes, C.D., and Czyzak, S.J. 1981, Ap. J., 248, 569.ADSCrossRefGoogle Scholar
  9. Condal, A.R. 1982, Astron. Astrophys., 112, 124.ADSGoogle Scholar
  10. NGC 6720: See references to Table 1.Google Scholar
  11. NGC 6302: Aller, L.H., Keyes, C.D., Ross, J.E., and O’Mara, B.J. 1981, M.N.R.A.S., 197, 95.ADSGoogle Scholar
  12. Analyses of Planetary Nebulae in Various Galaxies Google Scholar

The field of endeavor is attracting additional attention as very efficient radiation detection systems become available. A general review with references to earlier work is given by:

  1. Ford, H.C 1983, IAU Symposium No. 103, p. 443.Google Scholar

A few examples of individual investigations:

  1. Magellanic Clouds: Osmer, P. 1976, Ap. J., 203, 352.ADSCrossRefGoogle Scholar
  2. Webster, B.L. 1978, IAU Symposium No. 76, 11.Google Scholar
  3. Dufour, R., and Killen R. 1979, Ap. J., 211, 68.ADSCrossRefGoogle Scholar
  4. Aller, L.H. 1983, Ap. J., 273, 590.ADSCrossRefGoogle Scholar
  5. Aller, L.H., Keyes, C.D., Ross, J.E., and O’Mara, B.J. 1980, M.N.R.A.S., 194, 613.ADSGoogle Scholar
  6. Maran, S., Stecher, T., Gull, T., and Aller, L.H. 1982, Ap. J., 253, L43.ADSCrossRefGoogle Scholar
  7. NGC 6822: Dufour, R., and Talent, D. 1980, Ap. J., 235, 22.ADSCrossRefGoogle Scholar
  8. M31: Jenner, D., Ford, H., and Jacoby, G. 1979, Ap. J., 227, 392.Google Scholar
  9. Fornax: Danziger, E.J., Dopita, M.A., Hawarden T.G., and Webster, B.L. 1978, Ap. J., 220, 458. See also Maran, S.P. 1984, Ap. J. (in press).ADSCrossRefGoogle Scholar

H II Regions and Abundance Gradients in Galaxies:

  1. Although a change in the level of excitation of the H II regions in M33 with a distance from the center was noticed long ago (1942, Aller, L.H., Ap. J., 95, 52)ADSCrossRefGoogle Scholar
  2. a systematic study was first undertaken by Searle, L., 1971, Ap. J., 168, 327.ADSCrossRefGoogle Scholar
  3. Further investigations were carried out by Smith, H.E., 1975, Ap. J., 199, 591ADSCrossRefGoogle Scholar
  4. who extended the study to several spirals, by Shields, G., and Searle, L., 1978, Ap. J., 222, 821ADSCrossRefGoogle Scholar
  5. by Sedwick, K.E., and Aller, L.H., 1981, Proc.Nat’l. Acad. Sci. USA, 78, 1994ADSCrossRefGoogle Scholar
  6. Rayo, J.F., Peimbert, M., and Torres-Peimbert, S., 1982, Ap. J., 255, 1ADSCrossRefGoogle Scholar
  7. who investigated M101. Similar studies have been carried out by many investigators. See also Alloin, D., Collin-Souffrin, S., Joly, M. 1979, Astron. Astrophys. Suppl., 37, 361ADSGoogle Scholar
  8. Jensen, E.B., and Strom, K.M. and S.E. 1976, Ap. J., 209, 748ADSCrossRefGoogle Scholar
  9. Webster, B.L., and Smith M.G. 1983, M.N.R.A.S., 204, 743ADSGoogle Scholar
  10. A useful summarizing article with an extensive bibliography is: Pagel, B.E.J., and Edmunds, M.G. 1981, Annual Reviews Astron. Astrophys., 19, 77.ADSCrossRefGoogle Scholar
  11. See also Peimbert, M. 1975, Ann. Rev. Astron. Astrophys., 13, 113.ADSCrossRefGoogle Scholar
  12. The relation between H II regions and star formation in irregular galaxies is discussed by D.A. Hunter, 1982, Ap. J., 260, 81.ADSCrossRefGoogle Scholar
  13. Magellanic Clouds: Extensive investigations were carried out by Peimbert, M., and Torres-Peimbert, S., 1974, Ap. J., 193, 327Google Scholar
  14. 1976, Ap. J., 204, 581Google Scholar
  15. Aller, L.H., Czyzak, S.J., Reyes, C.D., and Boeshaar, G., 1974, Proc. Nat’l. Acad. Sci. USA, 71, 4496ADSCrossRefGoogle Scholar
  16. Dufour, R.J., 1975, Ap. J., 195, 315ADSCrossRefGoogle Scholar
  17. Dufour, R.J., and Harlow, W., 1977, Ap. J., 216, 706ADSCrossRefGoogle Scholar
  18. Pagel, B.E.J., Edmunds, M.G., Fosbury, R., and Webster, B.L., 1978, M.N.R.A.S., 184, 569.ADSGoogle Scholar
  19. Theoretical models were calculated by: Dufour, R.J., Shields, G.A., and Talbot, R.J., 1982, Ap. J., 252, 461ADSCrossRefGoogle Scholar
  20. Aller, L.H., Keyes, CD., and Czyzak, S.J., 1979, Proc. Nat’l. Acad. Sci. USA, 76, 1525.ADSCrossRefGoogle Scholar
  21. Abundance Gradients in Our Galaxy: See particularly Shaver et al., 1984, M.N.R.A.S., in press. For a discussion of abundance gradients obtained for our galaxy from planetary nebulae, see Peimbert, M., and Serrano, A., 1980, Rev. Mex. Astron. Astrofis., 5, 9, and references therein.ADSGoogle Scholar
  22. Two representative examples describing abundance gradients derived from stars are: Mayor, M., 1976, Astron. Astrophys., 48, 301ADSGoogle Scholar
  23. Janes, K.A., 1979, Ap. J, Suppl., 39, 135. Some abundance gradients derived from H II regions are listed in Table 6; special attention is directed to the article by Shaver et al. (1982).ADSCrossRefGoogle Scholar
  24. Isotope ratios are discussed by: Wannier, P.G., 1980, Ann. Rev. Astron. Astrophys., 18, 399ADSCrossRefGoogle Scholar
  25. Penzias, A.A., 1980, Science, 208, 663.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • Lawrence H. Aller
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations