Skip to main content

Relative Permeability and Multiphase Flow in Porous Media

  • Chapter
  • 1022 Accesses

Abstract

Relative permeability is a concept used to relate the absolute permeability (100% saturated with a single fluid) of a porous system to the effective permeability of a particular fluid in the system when that fluid only occupies a fraction of the total pore volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burdine, N.T., Relative permeability calculations from pore size distribution data, Trans. AIME 198 (1953), 71.

    Google Scholar 

  2. Corey, A.T., The interrelation between gas and oil relative permeabilities, Prod. Mon. 19 (Nov. 1954), 34.

    Google Scholar 

  3. Amott, E., Observations relating to the wettability of porous rock, Trans. AIME 216 (1959), 156.

    Google Scholar 

  4. Geffen, T.M., Owens, W.W., Parrish, D.R. and Morse, R.A., Experimental investigation of factors affecting laboratory relative permeability measurements, Trans. AIME 192 (1951), 99.

    Google Scholar 

  5. Morse, R.A., Terwilliger, P.L. and Yuster, S.T., Relative permeability measurements on small core samples, OGJ (Aug 23, 1947 ).

    Google Scholar 

  6. Osoba, J.S., Richardson, J.C., Kerver, J.K., Hafford, J.A. and Blair, P.M., Laboratory measurements of relative permeability, Trans. AIME 192 (1951), 47.

    Google Scholar 

  7. Jordan, J.K., McCardell, W.M. and Hocott, C.R., Effect of rate on oil recovery by waterflooding, OGJ (May 13, 1957 ), 98.

    Google Scholar 

  8. Buckley, S.E. and Leverett, M.C., Mechanism of fluid displacement in sands, Trans. AIME 146 (1942), 107.

    Google Scholar 

  9. Cardwell, W.T., The meaning of the triple value in non-capillary Buckley-Leverett theory, Trans. AIME 216 (1959), 271.

    Google Scholar 

  10. Welge, H.J., A simplified method for computing oil recovery by gas or water drive, Trans. AIME 195 (1952), 91.

    Google Scholar 

  11. Kyte, J.R. and Rapoport, L.A., Linear waterflood behaviour and end effects in water wet porous media, Trans. AIME 213 (1958), 423.

    Google Scholar 

  12. Mungan, N., Certain wettability effects in laboratory waterfloods, J. Pet. Tech. (Feb. 1966), 247.

    Google Scholar 

  13. Johnson, E.F., Bossler, D.P. and Naumann, V.O., Calculation of relative permeability from displacement experiments, Trans. AIME 216 (1959), 370.

    Google Scholar 

  14. Colpitts, G.P. and Hunter, D.E., Laboratory displacement of oil by water under simulated reservoir conditions, J. Can. Pet. Tech. 3 (2) (1964), 66.

    Google Scholar 

  15. Kyte, J.R., Naumann, V.O. and Mattax, C.C., Effect of reservoir environment on water—oil displacements, J. Pet. Tech. (June 1961), 579.

    Google Scholar 

  16. Sandberg, C.R., Gournay, L.S. and Sippel, R.F., The effect of fluid flow rate and viscosity on laboratory determinations of oil—water relative permeability, Trans. AIME 213 (1958), 36.

    Google Scholar 

  17. Mungan, N., Relative permeability measurements using reservoir fluids, SPEJ (Oct. 1972), 398.

    Google Scholar 

  18. Salathiel, R.A., Oil recovery by surface film drainage in mixed wettability rock, JPT (Oct. 1973), 1216.

    Google Scholar 

  19. Rathmell, J.J., Braun, P.H. and Perkins, T.K., Reservoir waterflood residual oil saturation from laboratory tests, JPT (Feb. 1973), 175.

    Google Scholar 

  20. Jenks, L.H., Huppler, J.D., Morrow, M.R. and Salathiel, R.A., Fluid flow within a porous medium near a diamond bit, Paper 6824, Proc. 19th Ann. Mtg. Pet. Soc. CIM (May 1968).

    Google Scholar 

  21. Treiber, L.E., Archer, D.L. and Owens, W.W., Laboratory evaluation of the wettability of fifty oil producing reservoirs, SPEJ (Dec. 1972), 531.

    Google Scholar 

  22. Huppler, J.D., Numerical investigation of the effects of core heterogeneities on waterflood relative permeabilities, SPEJ (Dec. 1970) 381.

    Google Scholar 

  23. Braun, E.M. and Blackwell, R.J., A steady state technique for measuring oil—water relative permeability curves at reservoir conditions, Paper SPE 10155, Proc. 56th Ann. Fall Mtg. (1981).

    Google Scholar 

  24. Jones, S.C. and Rozelle, W.O., Graphical techniques for determining relative permeability from displacement experiments, SPEJ (May 1978), 807.

    Google Scholar 

  25. Craig, F.F., The Reservoir Engineering Aspects of Waterflooding, SPE Monograph No. 3 (1971).

    Google Scholar 

  26. Brown, C.E. and Langley, G.O., The provision of laboratory data for FOR simulation, Proc. Europ. Symp. on FOR (1981), 81.

    Google Scholar 

  27. Taber, J.J., Research on FOR — past, present and future, In Surface Phenomena in FOR ( Shah, D.O. ed.), Plenum Pr. ( N.Y. ), (1981), 13.

    Google Scholar 

  28. Larson, R.G., Davis;, H.T. and Scriven, L.E., Elementary mechanisms of oil recovery by chemical methods, JPT (Feb. 1982), 243.

    Google Scholar 

  29. Hvolboll, V.T., Methods for accurately measuring produced oil volumes during laboratory waterflood tests at reservoir conditions, SPEJ (Aug. 1978), 239.

    Google Scholar 

  30. Archer, J.S. and Wong, S.W., Use of a reservoir simulator to interpret laboratory waterflood data, SPEJ (Dec. 1973), 343.

    Google Scholar 

  31. Tao, T.M. and Watson, A.T., Accuracy of JBN estimates of relative permeability, SPEJ (April 1984), 209.

    Google Scholar 

  32. Sigmund, P.M. and McCaffery, F.G., An improved unsteady state procedure for determining the relative permeability characteristics of heterogeneous porous media, SPEJ (Feb. 1979), 15.

    Google Scholar 

  33. Collins, R.E., Flow of Fluids Through Porous Materials, Penwell, Tulsa (1976).

    Google Scholar 

  34. Brooks, R.H. and Corey, A.T., Properties of porous media affecting fluid flow, J. Irrig. Drain. Div., Proc. ASCE (1966), Vol. 92, Ir. 2, 61.

    Google Scholar 

  35. Torabzadeh, S.J. and Handy, L.L., The effect of temperature and interfacial tension on water—oil relative permeabilities of consolidated sands, SPE/DOE 12689, Proc. 4th Symp. EOR, Tulsa (April 1984), 105.

    Google Scholar 

  36. Heiba, A.A., Davis, H.T. and Scriven, L.E., Statistical network theory of three phase relative permeabilities, SPE/DOE, 12690, Proc. 4th Symp. EOR, Tulsa (April 1984), 121.

    Google Scholar 

  37. Ramakrishnan, T.S. and Wasan, D.T., The relative permeability function for two phase flow in porous media — effect of capillary number, SPE/ DOE 12693, Proc. 4th Symp. EOR, Tulsa (April 1984), 163.

    Google Scholar 

  38. Manjnath, A. and Honarpour, M.M., An investigation of three phase relative permeability, SPE 12915, Proc. Rocky Mt. Reg. Mtg. (May 1984), 205.

    Google Scholar 

  39. Corey, A.T., Rathjens, C.H., Henderson, J.H. and Wylie, M., Three phase relative permeability, Trans. AIME 207 (1956), 349.

    Google Scholar 

  40. Stone, H.L., Estimation of three phase relative permeability and residual oil data, J. Can. Pet. Tech. (Oct.—Dec. 1973 ), 53.

    Google Scholar 

  41. Land, C.S., Calculation of imbibition relative permeability for two and three phase flow, from rock properties, SPEJ (June 1968), 149.

    Google Scholar 

  42. Dietrich, J.K. and Bondor, P.B., Three phase oil relative permeability models, SPE 6044, Proc. 5lstAnn. Fall Mtg. SPE (Oct. 1976).

    Google Scholar 

  43. Carlson, F.M., Simulation of relative permeability hysteresis to the non wetting phase, SPE 10157, Proc. 56th Ann. Fall Mtg. SPE (Oct. 1981).

    Google Scholar 

  44. Killough, J.E., Reservoir simulation with history dependent saturation functions, SPEJ (Feb. 1976), 37.

    Google Scholar 

  45. Cuiec, L.E., Restoration of the natural state of core samples, SPE 5634, Proc. Ann. Fall Mtg. SPE (Oct. 1975).

    Google Scholar 

  46. Hearn, C.L., Simulation of stratified waterflooding by pseudo relative permeability curves, J. Pet. Tech. (July 1971), 805.

    Google Scholar 

  47. Berruin, N.A. and Morse, R.A., Waterflood performance of heterogeneous systems, JPT (July 1979), 829.

    Google Scholar 

  48. Coats, K.H., Dempsey, J.R. and Henderson, J.H., The use of vertical equilibrium in two dimensional simulation of three dimensional reservoir performance, SPEJ (March 1971), 63.

    Google Scholar 

  49. Dietz, D.N., A theoretical approach to the problem of encroaching and by-passing edge water, Proc. Koninkl Akad. van Wetenschappen,(1953) Amst. V. 56—B, 83.

    Google Scholar 

  50. Davis, L.A., VHF electrical measurement of saturations in laboratory floods, SPE 8847, Proc. 1st Jnt SPE/DoE Symp. EOR, Tulsa (April 1980), 397.

    Google Scholar 

  51. Fayers, F.J. and Sheldon, J.W., The effect of capillary pressure and gravity on two phase flow in a porous medium, Trans. AIME 216 (1959), 147.

    Google Scholar 

  52. Dyes, A.B., Caudle, B.H. and Erickson, R.A., Oil production after breakthrough — as influenced by mobility ratio, Trans. AIME 201 (1954), 81.

    Google Scholar 

  53. Dykstra, H. and Parsons, R.L., The prediction of oil recovery by waterflood, Sec. Rec. of oil in the U.S.,2nd ed. API (1950), 160.

    Google Scholar 

  54. Johnson, C.E., Predicition of oil recovery by waterflood — a simplified graphical treatment of the Dykstra-Parsons method, Trans. AIME 207 (1956), 345.

    Google Scholar 

  55. Stiles, W.E., Use of permeability distribution in waterflood calculations, Trans. AIME 186 (1949), 9.

    Google Scholar 

  56. Ashford, F.E., Computed relative permeability, drainage and imbibition, SPE Paper 2582, Proc. 44th Ann. Fall Mtg. (1969).

    Google Scholar 

  57. Evrenos, A.I. and Corner, A.G., Sensitivity studies of gas—water relative permeability and capillarity in reservoir modelling, SPE2608 (1969).

    Google Scholar 

  58. Kyte, J.R. and Berry, D.W., New pseudo functions to control numerical dispersion, SPEJ (Aug. 1975), 269.

    Google Scholar 

  59. Jacks, H.H., Smith, O.J. and Mattax, C.C., The modelling of a three dimensional reservoir with a two dimensional reservoir simulator — the use of dynamic pseudo functions, SPEJ (June 1973), 175.

    Google Scholar 

  60. Woods, E.G. and Khurana, A.K., Pseudo functions for water coning in a three dimensional reservoir simulator, SPEJ 17 (1977), 251.

    Article  Google Scholar 

  61. Chappelear, J.E. and Hirasaki, G.J., A model of oil—water coning for 2-D areal reservoir simulation SPEJ (1976), 65.

    Google Scholar 

  62. Koval, E.J., A method for predicting the performance of unstable miscible displacement in heterogeneous media, SPEJ (June 1966), 145.

    Google Scholar 

  63. Handy, L.L. and Datta, P., Fluid distribution during immiscible displacements in porous media, SPEJ (Sept. 1966), 261.

    Google Scholar 

  64. Higgins, R.V., Boley, D.W. and Leighton, A.J., Unique properties of permeability curves of concern to reservoir engineers, U.S. Bur. Mines Rept. Investig., RI7006 (1967).

    Google Scholar 

  65. Hagoort, J., Oil recovery by gravity drainage, SPEJ (June 1980), 139., [67] Bragg, J.R. et al., A comparison of several techniques for measuring residual oil saturation, SPE 7074, Proc. Symp. Impr. Oil Rec., Tulsa (April 1978), 375.

    Google Scholar 

  66. Bragg, J.R. etal., A comparision of several techniques for measuring residual oil saturation, SPE 7074, Proc. Symp. Impr. Oil Rec., Tulsa (April 1978),375

    Google Scholar 

  67. Deans, H.A., Using chemical tracers to measure fractional flow and saturation in situ, SPE 7076, Proc. Symp. Impr. Oil Rec., Tulsa (April 1978), 399.

    Google Scholar 

  68. Hove, A.O., Ringen, J.K. and Read, P.A., Visualisation of laboratory core floods with the aid of computerised tomography of X-rays, SPE 13654, Proc. Clif Reg. Mtg. SPE (March 1985).

    Google Scholar 

  69. McCaffery, F.G. and Bennion, D.W., The effect of wettability on two phase relative permeability, J. Can. Pet. Tech. (Oct./Dec. 1974 ), 42.

    Google Scholar 

  70. Singhal, A.K., Mekjerjee, D.P. and Somerton, W.H., Effect of heterogeneities on flow of fluids through porous media, J. Can. Pet. Tech. (July—Sept. 1976 ), 63.

    Google Scholar 

  71. Fulcher, R.A., Ertekin, T. and Stahl, C.D., Effect of capillary number and its constituents on two phase relative permeability curves, JPT (Feb. 1985), 249.

    Google Scholar 

  72. Melrose, J.C. et al., Water—rock interactions in the Pembina field, Alberta, SPE 6049, Proc. 51st Ann. Fall Mtg. (1976).

    Google Scholar 

  73. Archer, J. S., Some aspects of reservoir description for reservoir modelling. Proc. Intl. Seminar North Sea Oil and Gas ReservoirsTrondheim (December 1985).

    Google Scholar 

  74. Slider, H.C., Worldwide Practical Petroleum Reservoir Engineering Methods, Pennwell Books, Tulsa (1983).

    Google Scholar 

  75. Rapoport, L.A. and Leas, W.J., Properties of linear waterfloods, Trans. AIME 198 (1953), 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 J S Archer and C G Wall

About this chapter

Cite this chapter

Archer, J.S., Wall, C.G. (1986). Relative Permeability and Multiphase Flow in Porous Media. In: Petroleum Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9601-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9601-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-86010-715-6

  • Online ISBN: 978-94-010-9601-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics