Skip to main content

Dissolved gases in sea water

  • Chapter

Abstract

The atmosphere is the major source of gases to sea water. The atmosphere itself consists of a mixture of major, minor and trace gases, and the abundances of a number of these are given in Table 8.1. The ocean can act as either a source or a sink for atmospheric gases. The gases enter or leave the ocean via exchange across the air/sea interface, and are transported within the ocean reservoir by physical processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyle, E.A. 1988. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331, 55–6.

    Article  Google Scholar 

  • Boyle, E.A. & L.D. Keigwin 1985. Comparison of Atlantic and Pacific paleochemical records for the last 250 000 years: changes in deep ocean circulation and chemical inventories. Earth Planet, Sci. Lett. 76, 135–50.

    Article  Google Scholar 

  • Brewer, P.G. 1983. Carbon dioxide and the oceans. In Changing climate, 186–215, Rep. Carbon Dioxide Assess. Comm. Washington, DC: National Academy Press.

    Google Scholar 

  • Brewer, P.G., A.L. Bradshaw & R.T. Williams 1986. Measurement of total carbon dioxide and alkalinity in the North Atlantic Ocean in 1981. In The changing carbon cycle. A global analysis, J.R. Trabalka & D.E. Reichle (eds), 348–70. New York: Springer-Verlag.

    Google Scholar 

  • Broecker, W.S. 1974. Chemical oceanography. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Broecker, W.S. 1982. Ocean chemistry during glacial times. Geochim. Cosmochim. Acta 46, 1689–705.

    Article  Google Scholar 

  • Broecker, W.S. & T.-H. Peng 1974. Gas exchange rates between air and sea. Tellus 26, 21–35.

    Article  Google Scholar 

  • Broecker, W.S. & T.-H. Peng 1982. Tracers in the sea. Palisades: Lamont-Doherty Geological Observatory.

    Google Scholar 

  • Burke, C.M. & M.J. Atkinson 1988. Measurement of total alkalinity in hypersaline waters. Mar. Chem. 25, 49–55.

    Article  Google Scholar 

  • Burton, J.D., P.G. Brewer & R. Chesselet (eds) 1986. Dynamic processes in the chemistry of the upper ocean. New York: Plenum.

    Google Scholar 

  • Campbell, J.A. 1983. The Geochemical Ocean Sections Study — GEOSECS. In Chemical oceanography, J. P. Riley & R. Chester (eds), Vol. 8, 89–155. London: Academic Press.

    Google Scholar 

  • Conrad, R. & W. Seiler 1986. Exchange of GO and H2 between ocean and atmosphere. In The role of air-sea exchange in geochemical cycling, P. Buat-Menard (ed.), 269–82. Dordrecht: Reidel.

    Google Scholar 

  • Culberson, C.H. 1981. Direct potentiometry. In Marine electrochemistry, M. Whitfield & D. Jagner (eds), 187–261. Chichester: Wiley.

    Google Scholar 

  • Deuser, W.G. 1975. Reducing environments. In Chemical oceanography, J.P. Riley & G. Skirrow (eds), Vol. 3, 1–37. London: Academic Press.

    Google Scholar 

  • Dickson, A.G. 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res. 28, 609–23.

    Article  Google Scholar 

  • Dickson, A.G. 1984. pH scales and proton-transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta 48, 2299–308.

    Article  Google Scholar 

  • Duplessey, J.C. 1986. CO2 air-sea exchange during glacial times: importance of deep-sea circulation changes. In The role of air-sea exchange in geochemical cycling. P. Buat-Menard (ed.), 249–67. Dordrecht: Reidel.

    Google Scholar 

  • Edmond, J.M. 1970. High precision determination of titration alkalinity and the total carbon dioxide content of sea water by Potentiometric titration. Deep-Sea Res. 17, 737–50.

    Google Scholar 

  • Fitzgerald, W.F. 1986. Cycling of mercury between the atmosphere and oceans. In The role of air-sea exchange in geochemical cycling, P. Buat-Menard (ed.), 363–408. Dordrecht: Reidel.

    Google Scholar 

  • Hansson, I. & D. Jagner 1973. Evaluation of the accuracy of Gran plots by means of computer calculations. Application to the Potentiometric titration of the total alkalinity and carbonate content in sea water. Anal. Chim. Acta 65, 363–72.

    Article  Google Scholar 

  • Hunter-Smith, R.J., P.W. Balls & P.S. Liss 1983. Henry’s law constants and the air-sea exchange of various low molecular weight halocarbon gases. Tellus 35, 170–6.

    Google Scholar 

  • Kanwisher, J. 1963. On the exchange of gases between the atmosphere and the sea. Deep-Sea Res. 10, 195–207.

    Google Scholar 

  • Keeling, C.D. 1968. Carbon dioxide in surface ocean waters. 4. Global distribution. J. Geophys. Res. 14, 4543–53.

    Article  Google Scholar 

  • Kester, D.R. 1975. Dissolved gases other than CO2. In Chemical oceanography, J.P. Riley & G. Skirrow (eds), Vol. 1, 497–589. London: Academic Press.

    Google Scholar 

  • Liss, P.S. 1983. Gas transfer: experiments and geochemical implications. In Air-sea exchange of gases and particles, P.S. Liss & W.G. Slinn (eds), 241–98. Dordrecht: Reidel.

    Google Scholar 

  • Liss, P.S. 1986. The air-sea exchange of low molecular weight halocarbon gases. In The role of air-sea exchange in geochemical cycling, P. Buat-Menard (ed.), 283–94. Dordrecht: Reidel.

    Google Scholar 

  • Liss, P.S. & L. Merlivat 1986. Air-sea gas exchange rates: introduction and synthesis. In The role of air-sea exchange in geochemical cycling, P. Buat-Menard (ed.), 113–27. Dordrecht: Reidel.

    Google Scholar 

  • Liss, P.S. & P.G. Slater 1974. Flux of gases across the air-sea interface. Nature 247, 181–4.

    Article  Google Scholar 

  • Millero, F.J. 1986. The pH of estuarine waters. Limnol. Oceanogr. 31, 839–47.

    Article  Google Scholar 

  • Mix, A.C. 1989. Influence of productivity variations on long-term atmospheric CO2. Nature 337, 541–44.

    Article  Google Scholar 

  • Packard, T.T., H.J. Minas, B. Coste, R. Martinez, M.C. Bonin, J. Gostan, P. Garfield, J. Chistensen, Q. Dortch, M. Minas, G. Copin-Montegut & C. Copin-Montegut 1988. Formation of the Alboran oxygen minimum zone. Deep-Sea Res. 35, 1111–8.

    Article  Google Scholar 

  • Rakestraw, N.W. 1949. The conception of alkalinity of excess base in sea water. J. Mar. Res. 8, 14–20.

    Google Scholar 

  • Richards, F.A. 1965. Dissolved gases other than carbon dioxide. In Chemical oceanography, 1st edn, J.P. Riley & G. Skirrow (eds), 197–225. London: Academic Press.

    Google Scholar 

  • Riley, J.P. & R. Chester 1971. Introduction to marine chemistry. London: Academic Press.

    Google Scholar 

  • Roether, W. 1986. Field measurements of gas exchange. In Dynamic processes in the chemistry of the upper ocean, J.D. Burton, P.G. Brewer & R. Chesselet (eds), 117–28. New York: Plenum.

    Google Scholar 

  • Sarmiento, J.L. 1986. Three-dimensional ocean models for predicting the distribution of CO2 between the ocean and atmosphere. In The changing carbon cycle: a global analysis. J.R. Trabalka & D.E. Reichle (eds), 279–94. New York: Springer-Verlag.

    Google Scholar 

  • Sarmiento, J.L. & J.R. Tpggweiler 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 303, 621–4.

    Article  Google Scholar 

  • Shulenberger, E. & J.L. Reid 1981. The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered. Deep-Sea Res. 28, 901–19.

    Article  Google Scholar 

  • Siegenthaler, U. 1986. Carbon dioxide: its natural cycle and anthropogenic perturbation. In The role of air-sea exchange in geochemical cycling, P. Buat-Menard (ed.), 209–47. Dordrecht: Reidel.

    Google Scholar 

  • Sillen, L.G. 1963. How has sea water got its present composition? Sven. Kern. Tidskr. 75, 161–77.

    Google Scholar 

  • Skirrow, G. 1975. The dissolved gases — carbon dioxide. In Chemical oceanography, J.P. Riley & G. Skirrow (eds), Vol. 2, 1–192. London: Academic Press.

    Google Scholar 

  • Stauffer, B., H. Hofer, H. Oeschger, J. Schwanfer & U. Siegenthaler 1984. Atmospheric CO2 concentrations during the last glaciation. Ann. Glaciol. 5, 160–4.

    Google Scholar 

  • Stumm, W. & J.J. Morgan 1981. Aquatic chemistry. New York: Wiley.

    Google Scholar 

  • Sundquist, E.T., L.N. Plummer & T.M.L. Wigley 1979. Carbon dioxide in the ocean surface: the homogeneous buffer factor. Science 204, 1203–5.

    Article  Google Scholar 

  • Takahasi, T., W.S. Broeker & A.E. Bainbridge 1981. The alkalinity and total carbon dioxide concentration in the world oceans. In Carbon cycle modelling, Scope 16, B. Bolin (ed.), 159–99. New York: Wiley.

    Google Scholar 

  • Takahasi, T., W.S. Broecker, S.R. Werner & A.E. Bainbridge 1980. Carbonate chemistry of the surface waters of the World Ocean. In Isotope marine chemistry, E.D. Goldberg, Y. Horibe & K. Saruhashi (eds), 291–326. Tokyo: Uchida Rokahuho.

    Google Scholar 

  • Trabalka, J.R. & D.E. Reichle 1986. The changing carbon cycle. A global analysis. New York: Springer-Verlag.

    Google Scholar 

  • Unesco 1987. Unesco Tech. Pap. Mar. Sci., no. 51. Paris: Unesco.

    Google Scholar 

  • Weiss, R.F. 1970. The solubility of nitrogen, oxygen and argon in water and sea water. Deep-Sea Res. 17, 721–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Roy Chester

About this chapter

Cite this chapter

Chester, R. (1990). Dissolved gases in sea water. In: Marine Geochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9488-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9488-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9490-0

  • Online ISBN: 978-94-010-9488-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics