Skip to main content

A Consideration on the Changing Role of Mathematics in Ampère’s and Weber’s Electrodynamics

  • Chapter
A History of the Ideas of Theoretical Physics

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 213))

  • 1214 Accesses

Abstract

In 1820 Andre Marie Ampère (1775 Lyon — 1836 Marseilles) coined the term électrodynamique to indicate that the new science of electric currents and magnets was part of the Newtonian program of a general science of forces and motions. Adopting the spirit of Ampère’s works, Gauss and Weber translated the French into Elektrodynamik and Helmholtz and Hertz also used this German term in their reinterpretation of Maxwell’s ideas. Conversely, the term “electromagnetism” appears to have originated with Oersted and, extensively used in Faraday’s and Maxwell’s work, remained the standard word in the Anglo-Saxon tradition. Following the German tradition, Lorentz and Einstein used elektrodynamik while most others theoretical physicists of the twentieth century preferred the English translation of the term, “electrodynamics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Ampère [1826] 10. Ampère [1921] 79.

    Google Scholar 

  2. This short rendering of Ampëre’s arguments is in Whittaker [1951] vol.I, 85, 86.

    Google Scholar 

  3. Ampère [1921] 79.

    Google Scholar 

  4. Ampère [1921] 79, note.

    Google Scholar 

  5. Ampère [1926] 161–194.

    Google Scholar 

  6. Ampère [1926] 8.

    Google Scholar 

  7. O’Rahilly [1965] Vol. 2, 523.

    Google Scholar 

  8. This is a view held by both Ampère and von Humbol. See Jungnickel & Mccormmach [1986] Vol. 1, 64.

    Google Scholar 

  9. A letter from Gauss to the Göttingen University Curator, 29 January 1833, a quotation in Jungnickel & McCormmach [1986] Vol. 1, 64.

    Google Scholar 

  10. Gauss [1867] Vol. V, pp. 293–304.

    Google Scholar 

  11. For a very incisive overview of Gauss’s theoretical and experimental contribution to magnetism: Jungnickel & McCormmach [1986] Vol. 1, 63–77.

    Google Scholar 

  12. Weber [1893] b) 6–18.

    Google Scholar 

  13. A rather extensive discussion of Weber’s life and work is in: Jungnickel & McCormmach [1986] a) 130–148; b) 72–79.

    Google Scholar 

  14. Weber [1846].

    Google Scholar 

  15. Weber [1846] Introduction, 34.

    Google Scholar 

  16. Weber [1846] 35–40. Therein Weber described this instrument in great detail.

    Google Scholar 

  17. Weber [1846] 79.

    Google Scholar 

  18. Weber [1846] 115 ff.

    Google Scholar 

  19. Weber [1846] 112 ff.

    Google Scholar 

  20. Weber [1846] 115 ff.

    Google Scholar 

  21. Weber [1846] 103 ff.

    Google Scholar 

  22. Weber [1846] 27–30, 133.

    Google Scholar 

  23. Weber [1846] 132–134.

    Google Scholar 

  24. Weber [1846] 135: “Diese drei Tatsachen sind zwar nicht unmittelbar durch die Erfahrung gegeben...sie hängen aber nit unmittelbar beobachteten Tatsachen so genau zusammen, daß sie fast gleiche Geltung als sie haben”.

    Google Scholar 

  25. Weber [1846] 134–135.

    Google Scholar 

  26. Weber [1846] 142.

    Google Scholar 

  27. Weber [1846] 54 ff. A modern rendering of Weber’s deduction is in Whittaker [1951] Vol. 1, pp. 83–88.

    Google Scholar 

  28. Weber [1846] 140–44.

    Google Scholar 

  29. Weber [1846] 44.

    Google Scholar 

  30. Weber [1846] 152; Weber [1851]; Weber [1848]; Weber [1893] b); Weber [1852].

    Google Scholar 

  31. Weber [1846]; Weber [1893] b) 157.

    Google Scholar 

  32. Weber [1848]; Weber [1893] b) 245–246.

    Google Scholar 

  33. Weber [1893] b) 157–207.

    Google Scholar 

  34. Weber [1851]; Weber [1893] b).

    Google Scholar 

  35. Weber [1852]; Weber [1893] b) 301–465.

    Google Scholar 

  36. Weber [1893] b) 321.

    Google Scholar 

  37. Weber [1846] 211.

    Google Scholar 

  38. Weber [1848] 245.

    Google Scholar 

  39. Weber [1852] 366.

    Google Scholar 

  40. Weber [1852] 366–67.

    Google Scholar 

  41. Weber [1852] 358.

    Google Scholar 

  42. Weber [1852] 368: “...ohne Kentnis der Geschwindigkeit die Reduktion der Gemessen Stromintensitäten, elektromotorischen Kräfte und Widerstände auf the bekannten Maasse der Mechanik nicht ausgeführt werden kann”.

    Google Scholar 

  43. Weber [1852] 368.

    Google Scholar 

  44. Weber & Kohlrausch [1856] 604–05.

    Google Scholar 

  45. Kohlrausch spoke of this experiment in the manuscript of a report to the Natural Science Society of Marburg dated 16 June 1852 [N.S.R source] 74). This method was the one tried by Rowland in his well-known experiment. See also Jun-gnickel & Mc Cormmack [1986] a) 145.

    Google Scholar 

  46. In 1873 Maxwell thought that the necessary velocity to obtain measurable effects was practically achievable (D’Agostino [1996] 41–42).

    Google Scholar 

  47. Weber, “Vorwort bei der öbergabe der Abhandlung: Elektrod. Maasbest. insbesondere Zurückßrung der Strömintensituats-Messungen auf Mechanische Maass” in: Weber [1856] 592, ff.

    Google Scholar 

  48. Weber & Koholrausch, “Elektrodynamische Maasbestimmungen insbesondere Zurückfürung der Strömintensitäts-Messungen auf Mechanische Maass.” Submitted by Weber to the Saxon Soc. in 1855, in Weber [1893] b) 609–76.

    Google Scholar 

  49. Short versions of Weber’s argument are often reported in the secondary sources; for instance: Whittaker [1951] Vol 1, 201–208. Also in: Wiederkehr [1967] 140–141. Therefore I can be excused from reporting the full procedure.

    Google Scholar 

  50. Weber & Koholrausch [1856] 605.

    Google Scholar 

  51. Weber [1856] 595.

    Google Scholar 

  52. Kirchhoff, “Über die Bewegung der Elektrizität in Drähten”, [1857), in: Kirchhoff [1882] 131.

    Google Scholar 

  53. Weber, “Elektrtrodynamischen Massbestimmungen insbesondere elektrische Schwingungen”, in: Weber [1864).

    Google Scholar 

  54. Weber [1864] 157.

    Google Scholar 

  55. Weber & Koholrausch [1856] 607.

    Google Scholar 

  56. Weber & Koholrausch [1856] 607.

    Google Scholar 

  57. Maxwell, highly praises Ampère’s theory in is Treatise. See: Maxwell [1954] Part IV, Chap. III.

    Google Scholar 

  58. Weber’s remarks on Ampère are extensively quoted by Duhem [1921] 324.

    Google Scholar 

  59. Duhem [1921] 324.

    Google Scholar 

  60. Duhem [1921] 322.

    Google Scholar 

  61. Ampère [1826] 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

D’Agostino, S. (2000). A Consideration on the Changing Role of Mathematics in Ampère’s and Weber’s Electrodynamics. In: A History of the Ideas of Theoretical Physics. Boston Studies in the Philosophy of Science, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9034-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9034-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0244-1

  • Online ISBN: 978-94-010-9034-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics