Skip to main content
  • 1487 Accesses

Abstract

Although root system studies are generally conceded to be important, the difficulties in such study are sufficiently daunting that root systems have received comparatively little attention in physiological ecology. The problems involve, in part, the sizable labor and time investment, the variability in root locations and activity, and the inadequacies of many root measures. The difficulties are often exacerbated for very fine roots and deep root systems. In spite of these difficulties, a judicious selection of experimental approaches, including indirect assessments, can yield meaningful results and can contribute significantly to an understanding of plant function in the field. Many new techniques have become available in the last few years. This chapter outlines a broad range of techniques for assessing root system structure and function in the field. Boehm (1979) has thoroughly described the classical, and still useful, root evaluation techniques. Emphasis here is, therefore, directed to newer techniques not covered to a great extent by Boehm (1979). This chapter treats methods as they relate primarily to the study of root systems in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., Melillo, J.M., Nadelhoffer, K.J., McClaugherty, C.A. and Pastor, J. (1985) Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia, 66, 317–21.

    Google Scholar 

  • Alessi, R.S. and Prunty, L. (1986) Soil-water determination using fiber optics. Soil Sci. Soc. Am. J., 50, 860–3.

    Google Scholar 

  • Allen, M.F. (1983) Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia, 75, 773–6.

    Google Scholar 

  • Allen, M.F. and MacMahon, J.A. (1985) Impact of disturbance on cold desert fungi: Comparative microscale dispersion patterns. Pedobiologia, 28, 215–24.

    Google Scholar 

  • Allison, G.B. and Hughes, M.W. (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J. Hydrol., 60, 157–73.

    Google Scholar 

  • Ambler, J.R. and Young, J.L. (1977) Technique for determining root length infected by vesiculararbuscular mycorrhizae. Soil Sci. Soc. Am. J., 41, 551–6.

    Google Scholar 

  • Ames, R.H., Ingham, E.F. and Reid, C.P.P. (1982) Ultraviolet-induced autofluorescence of arbuscular mycorrhizal root infections: An alternative to clearing and staining methods for assay infections. Can. J. Microbiol., 28, 351–5.

    CAS  Google Scholar 

  • Ares, J. (1976) Dynamics of the root system of blue grama. J. Range Manag., 29, 208–13.

    Google Scholar 

  • Arkley, R.J. (1981) Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci. Soc. Am. J., 45, 423–7.

    Google Scholar 

  • Belford, R.K., Rickman, R.W., Klepper, B. and Allmaras, R.R. (1986) Studies of intact shoot-root systems of field-grown winter wheat. I. Sampling techniques. Agron. J., 78, 757–60.

    Google Scholar 

  • Benson, D.R. (1982) Isolation of Frankia strains from alder actinorhizal root nodules. Appl. Environ. Microbiol., 44, 461–5.

    PubMed  CAS  Google Scholar 

  • Bergersen, F.J. (ed.) (1980a) Methods for Evaluating Biological Nitrogen Fixation, John Wiley and Sons, New York.

    Google Scholar 

  • Bergersen, F.J. (1980b) Measurement of nitrogen fixation by direct means. In Methods for Evaluating Biological Nitrogen Fixation (ed. F.J. Bergersen ), John Wiley and Sons, New York, pp. 65–110.

    Google Scholar 

  • Bethlenfalvay, G.J., Pacovsky, R.S. and Brown, M.S. (1981) Measurement of mycorrhizal infection in soybeans. Soil Sci. Soc. Am. J., 45, 871–5.

    Google Scholar 

  • Boehm, W. (1974) Mini-rhizotrons for root observations under field conditions. Zeitschr. Acker-Pflanzenbau, 140, 282–7.

    Google Scholar 

  • Boehm, W. (1977) Development of soybean root systems as affected by plant spacing. Zeitschr. Acker-Pflanzenbau, 144, 103–12.

    Google Scholar 

  • Boehm, W. (1979) Methods of Studying Root Systems, Springer-Verlag, New York.

    Google Scholar 

  • Boehm, W., Maduakor, H. and Taylor, H.M. (1977) Comparison of five methods for characterizing soybean rooting density and development. Agron. J., 69, 415–19.

    Google Scholar 

  • Bosch, A.L. (1984) A new root observation method: the perforated soil system. Acta Oecol., Oecol. Plant., 5, 61–74.

    Google Scholar 

  • Bottomley, P.A., Rogers, H.H. and Foster, T.H. (1986) NMR imaging shows water distribution and transport in plant root systems in situ. Proc. Natl. Acad. Sci. U.S.A., 83, 87–9.

    CAS  Google Scholar 

  • Bragg, P.L. and Cannell, R.Q. (1983) A comparison of methods, including angled and vertical minirhizotrons, for studying root growth and distribution in a spring oat crop. Plant Soil, 73, 435–40.

    Google Scholar 

  • Bremner, J.M. (1965a) Isotope-ratio analysis of nitrogen in nitrogen-15 tracer investigations. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy No. 9 (eds C.A. Black et al.), American Society of Agronomy, Madison, pp. 1256–86.

    Google Scholar 

  • Bremner, J.M. (1965b) Total nitrogen. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy No. 9 (eds C.A. Black et al.), American Society of Agronomy, Madison, pp. 1149–78.

    Google Scholar 

  • Brown, R.W. (1970) Measurement of soil water potential with thermocouple psychrometers: construction and application. USDA Forest Service Research Report INT-80.

    Google Scholar 

  • Burggraaf, A.J.P., Quispel, A., Tak, T. and Valstar, J. (1981) Methods of isolation and cultivation of Frankia species from actinorhizas. Plant Soil, 61, 157–68.

    Google Scholar 

  • Burris, R.H. (1974) Methodology. In The Biology of Nitrogen Fixation (ed. A. Quispel ), Elsevier, Amsterdam, pp. 9–33.

    Google Scholar 

  • Byrd, D.W. Jr., Barker, K.R., Ferris, H., Nusbaum, C.J., Griffin, W.E., Small, R.H. and Stone, C.A. (1976) Two semi-automatic elutriators for extracting nematodes and certain fungi from soil. J. Nematol., 8, 206–12.

    PubMed  CAS  Google Scholar 

  • Caldwell, M.M. (1987) Competition between root systems in natural communities. In Root Development and Function (eds P.J. Gregory, J.V. Lake and D.A. Rose ), Cambridge University Press, Cambridge, pp. 167–85.

    Google Scholar 

  • Caldwell, M.M. and Camp, L.B. (1974) Below-ground productivity of two cool desert communities. Oecologia, 17, 123–30.

    Google Scholar 

  • Caldwell, M.M. and Eissenstat, D.M. (1987) Coping with variability: Examples of tracer use in root function studies. In Plant Response to Stress–Functional Analysis in Mediterranean Ecosystems (eds J.D. Tenhunen, F. Catarino, O.L. Lange and W.C. Oechel ), Springer-Verlag, Heidelberg, pp. 95–106.

    Google Scholar 

  • Caldwell, M.M., Eissenstat, D.M., Richards, J.H. and Allen, M.F. (1985) Competition for phosphorus: Differential uptake from dual-isotopelabeled soil interspaces between shrub and grass. Science, 229, 384–6.

    PubMed  CAS  Google Scholar 

  • Caldwell, M.M. and Fernandez, O.A. (1975) Dynamics of Great Basin shrub root systems. In Environmental Physiology of Desert Organisms (ed. N.F. Hadley ), Dowden, Hutchinson & Ross, Stroudsburg, PA, pp. 38–51.

    Google Scholar 

  • Caldwell, M.M., Richards, J.H., Manwaring, J.H. and Eissenstat, D.M. (1987) Rapid shifts in phosphate acquisition show direct competition between neighbouring plants. Nature, London, 327, 615–16.

    Google Scholar 

  • Caldwell, M.M., White, R.S., Moore, R.T. and Camp, L.B. (1977) Carbon balance, productivity and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia, 29, 275–300.

    Google Scholar 

  • Callaham, D., Torrey, J.G. and Del Tredici, P. (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899–902.

    CAS  Google Scholar 

  • Chaney, W.R. (1981) Sources of water. In Water Deficits and Plant Growth (ed. T.T. Kozlowski ), Academic Press, New York, Vol. VI, pp. 1–47.

    Google Scholar 

  • Chapin, III, F.S. (1974) Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology, 55, 1180–98.

    CAS  Google Scholar 

  • Chiariello, N., Hickman, J.C. and Mooney, H.A. (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science, 217, 941–3.

    PubMed  CAS  Google Scholar 

  • Chiariello, N., Hickman, J.C. and Mooney, H.A. (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science, 217, 941–3.

    PubMed  CAS  Google Scholar 

  • Clark, F.E. and Rosswall, T. (eds) (1981) Terrestrial nitrogen cycles. Processes, ecosystem strategies and management impacts. Ecol. Bull., Stockholm No. 33, 714 pp.

    Google Scholar 

  • Costigan, P.A., Rose, J.A. and McBurney, T. (1982) A microcomputer based method for the rapid and detailed measurement of seedling root systems. Plant Soil, 69, 305–9.

    Google Scholar 

  • Daniels, B.A. and Skipper, H.D. (1982) Methods for the recovery and quantitative estimation of propagules from soil. In Methods and Principles of Mycorrhizal Research (ed. N.C. Schenck ), American Society of Phytopathology, St. Paul, MN, pp. 29–35.

    Google Scholar 

  • Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, 16, 436–68.

    Google Scholar 

  • Dart, P.J. (1975) Legume root nodule initiation and development. In The Development and Function of Plant Roots (eds J.G. Torrey and D.T. Clarkson ), Academic Press, New York, pp. 467–506.

    Google Scholar 

  • Date, R.A. (1982) Collection, isolation, characterization and conservation of Rhizobium. In Nitrogen Fixation in Legumes (ed. J.M. Vincent ), Academic Press, New York, pp. 95–109.

    Google Scholar 

  • Delwiche, C.C. and Steyn, P.L. (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environmental Science and Technology, 4, 927–35.

    Google Scholar 

  • Delwiche, C.C., Zinke, P.J., Johnson, C.M. and Virginia, R.A. (1979) Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Bot. Gaz., 140, 65–9.

    CAS  Google Scholar 

  • DeNiro, M.J. (1978) The effects of different methods of preparing cellulose nitrate on the determination of D/H ratios of non-exchangeable hydrogen of cellulose. Earth Planet. Sci. Lett., 54, 177–85.

    Google Scholar 

  • Drew, M.C. and Saker, L.R. (1980) Assessment of a rapid method, using soil cores, for estimating the amount and distribution of crop roots in the field. Plant Soil, 55, 297–305.

    Google Scholar 

  • Dunsworth, B.G. and Kumi, J.W. (1982) A new technique for estimating root system activity. Can. J. For. Res., 12, 1030–2.

    Google Scholar 

  • Ehleringer, J.R., Rundel, P.W. and Nagy, K.A. (1986) Stable isotopes in physiological ecology. TREE, 1, 42–5.

    PubMed  CAS  Google Scholar 

  • Epstein, S. and Mayeda, T. (1953) Variation of 780 content of waters from natural sources. Geochim. Cosmochim. Acta, 4, 213–24.

    CAS  Google Scholar 

  • Fabiao, A., Persson, H.A. and Steen, E. (1985) Growth dynamics of superficial roots in Portuguese plantations of Eucalyptus globulus Labill, studied with a mesh bag technique. Plant Soil, 83, 233–42.

    Google Scholar 

  • Farnsworth, R.B. and Hammond, M.W. (1968) Root nodules and isolation of endophyte on Artemisia ludoviciana. Proc. Utah Acad. Sci., 45, 182–8.

    Google Scholar 

  • Fitter, A.H. (1982) Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species. Plant, Cell Environ., 5, 313–22.

    Google Scholar 

  • Fitter, A.H. (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia, 69, 594–9.

    Google Scholar 

  • Fusseder, A. (1983) A method for measuring length, spatial distribution and distances of living roots in situ. Plant Soil, 73, 441–5.

    Google Scholar 

  • Fusseder, A. (1985) Verteilung des Wurzelsystems von Mais im Hinblick auf die Konkurrenz um Makronahrstoffe. Zeitschr. Pflanzenernaehr. Bodenkunde, 148, 321–34.

    CAS  Google Scholar 

  • Gardner, W.H. (1965) Water content. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties including Statistics of Measurement and Sampling. Agronomy No. 9 (eds C.A. Black et al.), American Society of Agronomy, Madison, pp. 82–127.

    Google Scholar 

  • Giovannetti, M. and Mosse, B. (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol., 84, 489–500.

    Google Scholar 

  • Glavac, V. and Ebben, U. (1986) Die Wurzelkammer, eine einfache Einrichtung zur experimentellen Nachprufung der Bodentoxizjtät an ausgewachsenen Baumen im Freiland. Lngew. Bot., 60, 95–102.

    Google Scholar 

  • Goodman, P.J. and Collison, M. (1982) Varietal differences in uptake of 32P labelled phosphate in clover plus ryegrass swards and monocultures. Ann. Appl. Biol., 100, 559–65.

    Google Scholar 

  • Grand, L.F. and Harvey, A.E. (1982) Quantitative measurement of ectomycorrhizae on plant roots. In Methods and Principles of Mycorrhizal Research (ed. N.C. Schenck ), American Society of Phytopathology, St. Paul, MN, pp. 157–64.

    Google Scholar 

  • Greacen, E.L. (1981) Soil Water Assessment by the Neutron Method, CSIRO, Australia.

    Google Scholar 

  • Hackett, C. (1968) A study of the root system of barley. I. Effects of nutrition on two varieties. New Phytol., 67, 289–99.

    Google Scholar 

  • Hainsworth, J.M. and Aylmore, L.A.G. (1986) Water extraction by single plant roots. Soil Sci. Soc. Am. J., 50, 841–8.

    Google Scholar 

  • Hanks, R.J. and Ashcroft, G.L. (1980) Applied Soil Physics. Soil Water and Temperature Applications, Springer-Verlag, Berlin and Heidelberg, p. 159.

    Google Scholar 

  • Hansson, A.C. and Andren, O. (1986) Below-ground plant production in a perennial grass ley (Festuca pratensis Huds.) assessed with different methods. J. Appl. Ecol., 23, 657–66.

    Google Scholar 

  • Hansson, A. and Steen, E. (1984) Methods of calculating root production and nitrogen uptake in an annual crop. Swed. J. Agric. Res., 14, 191–200.

    Google Scholar 

  • Hardy, R.W.F., Burns, R.C. and Holsten, R.P. (1973) Applications of the measurement of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem., 5, 47–81.

    CAS  Google Scholar 

  • Harley, J.L. and Smith, S.E. (1983) Mycorrhizal Symbiosis, Academic Press, New York.

    Google Scholar 

  • Hauck, R.D. and Bystrom, M. (1970) 15 N. A Selected Bibliography for Agricultural Scientists, Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Hauck, R.D. and Weaver, R.W. (eds) (1986) Field measurement of dinitrogen fixation and denitrification. Soil Sci. Soc. Am. Spec. Publ., No. 18, Madison, Wisconsin.

    Google Scholar 

  • Head, G.C. (1965) Studies of diurnal changes in cherry root growth and nutational movements of apple root tips by time-lapse cinematography. Ann. Bot., 29, 219–24.

    Google Scholar 

  • Hellmers, H., Horton, J.S., Juhren, G. and O’Keefe, J. (1955) Root systems of some chaparral plants in southern California. Ecology, 36, 667–78.

    Google Scholar 

  • Hepper, C. (1977) A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots. Soil Biol. Biochem., 9, 15–18.

    Google Scholar 

  • Hoffmann, A. and Kummerow, J. (1978) Root studies in the Chilean matorral. Oecologia, 32, 57–69.

    Google Scholar 

  • Holthausen, R.S. and Caldwell, M.M. (1980) Seasonal dynamics of root system respiration in Atriplex confertifolia. Plant Soil, 55, 307–17.

    Google Scholar 

  • Ianson, D.C. and Allen, M.F. (1986) The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia, 78, 164–8.

    Google Scholar 

  • Itoh, S. (1985) In situ measurement of rooting density by microrhizotron. Soil Sci. Plant Nutr., 31, 653–6.

    Google Scholar 

  • Jong, E. de, Redmann, R.E. and Ripley, E.A. (1979) A comparison of methods to measure soil respiration. Soil Sci., 127, 300–6.

    Google Scholar 

  • Joslin, J.D. and Henderson, G.S. (1984) The determination of percentages of living tissue in woody fine root samples using triphenyltetrazolium chloride. For. Sci., 30, 965–70.

    Google Scholar 

  • Kelley, J.M., VanDyne, G.M. and Harris, W.F. (1974) Comparison of three methods of assessing grassland productivity and biomass dynamics. Am. Midland Nat., 92, 357–69.

    Google Scholar 

  • Kelley, O.J., Hardman, J.A. and Jennings, D.S. (1947) A soil-sampling machine for obtaining two-, three-, and four-inch diameter cores to a depth of six feet. Soil Sci. Soc. Am. Proc., 12, 85–7.

    Google Scholar 

  • Knowles, R. (1980) Nitrogen fixation in natural plant communities and soils. In Methods for Evaluating Biological Nitrogen Fixation (ed. F.J. Bergersen ), John Wiley and Sons, New York, pp. 557–82.

    Google Scholar 

  • Knievel, D.P. (1973) Procedure for estimating ratio of living to dead root dry matter in root core samples. Crop Sci., 13, 124–6.

    Google Scholar 

  • Kormanik, P.P., Bryan, W.C. and Schultz, R.C. (1980) Procedures and equipment for staining large numbers of plant roots for endomycorrhizal assay. Can. J. Microbiol., 26, 536–8.

    PubMed  CAS  Google Scholar 

  • Kormanik, P.P. and McGraw, A.-C. (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In Methods and Principles of Mycorrhizal Research (ed. N.C. Schenck ), American Society of Phytopathology, St. Paul, MN pp. 37–47.

    Google Scholar 

  • Kummerow, J. (1981) Structure of roots and root systems. In Mediterranean-Type Shrublands (eds F. di Castri, D.W. Goodall and R.L. Specht ), Elsevier Science Publishers, Amsterdam, pp. 269–88.

    Google Scholar 

  • Kummerow, J., Krause, D. and Jow, W. (1977) Root systems of chaparral shrubs. Oecologia, 29, 163–77.

    Google Scholar 

  • Lamont, B. (1983) Root hair dimensions and surface/volume/weight ratios cif roots with the aid of scanning electron microscopy. Plant Soil, 74, 149–52.

    Google Scholar 

  • LaRue, T.A. and Patterson, T.G. (1981) How much nitrogen do legumes fix? Adv. Agron., 34, 15–38.

    CAS  Google Scholar 

  • Lewis, D.C. and Burgy, R.H. (1964) The relationship between oak tree roots and groundwater in fractured rock as determined by tritium tracing. J. Geophys. Res., 69, 2579–88.

    Google Scholar 

  • Litav, M. and Harper, J.L. (1967) A method for studying spatial relationships between the root systems of two neighboring plants. Plant Soil, 26, 389–92.

    Google Scholar 

  • Maas, M.V.M. and Gubbels, M.E.M.N. (1986) Root development in Robinia pseudoacacia: Observation in a perforon root box system. Abstr. 2nd Int. Legume Conf. Missouri Botanical Garden, St. Louis, pp. 53–4.

    Google Scholar 

  • McGowan, M., Armstrong, M.J. and Collie, J.A. (1983) A rapid fluorescent-dye technique for measuring root length. Exp. Agric., 19, 209–16.

    Google Scholar 

  • Mclnteer, B.B. and Montoya, J.G. (1980) Auto- mation of a mass spectrometer for nitrogen stable isotope analysis, U.S. Department of Energy Report No. LA-UR-80–245, Los Alamos, New Mexico.

    Google Scholar 

  • Marsh, B.a’B. (1971) Measurement of length in random arrangements of lines. J. Appl. Ecol., 8, 265–7.

    Google Scholar 

  • Marshall, J.D. and Waring, R.H. (1985) Predicting fine root production and turnover by monitoring root starch and soil temperature. Can. J. For. Res., 15, 791–800.

    Google Scholar 

  • Meyer, W.S. and Barrs, H.D. (1985) Non-destructive measurement of wheat roots in large undisturbed and repacked clay soil cores. Plant Soil, 85, 237–47.

    Google Scholar 

  • Melhuish, F.M. and Lang, A.R.G. (1969) A new technique for estimating diameter, total length and surface area of roots grown in soil. In Root Growth (ed. W.J. Whittington ), Butterworths, London, pp. 397–8.

    Google Scholar 

  • Milchunas, D.G., Laurenroth, W.K., Singh, J.S., Cole, C.V. and Hunt, H.W. (1985) Root turnover and production by 14C dilution: implications of carbon partitioning in plants. Plant Soil, 88, 353–65.

    CAS  Google Scholar 

  • Mosse, B., Stribley, D.P. and LeTacon, F. (1981) Ecology of mycorrhizae and mycorrhizal fungi. Adv. Microb. Ecol., 5, 137–210.

    Google Scholar 

  • Newman, E.I. (1966) A method for estimating the total length of root in a sample. J. Appl. Ecol., 3, 139–45.

    Google Scholar 

  • Nye, P.H. and Tinker, P.B. (1977) Solute Movement in the Soil-root System. University of California Press, Berkeley, 342 pp.

    Google Scholar 

  • Osborne, J.F. and Pelishek, R.E. (1961) Installing deep neutron tubes. Agric. Eng., 42, 611–12.

    Google Scholar 

  • Ottman, M.J. and Timm, H. (1984) Measurement of viable plant roots with the image analyzing computer. Agron. J., 76, 1018–20.

    Google Scholar 

  • Pacovsky, R.S. and Bethlenfalvay, G.J. (1982) Measurement of the extraradical mycelium of a vesicular-arbuscular mycorrhizal fungus in soil by chitin determination. Plant Soil, 68, 143–7.

    Google Scholar 

  • Pagliai, M., LaMarca, M. and Lucamante, G. (1983) Micromorphometric and micromorphological investigation of a clay loam in viticulture under zero and conventional tillage. J. Soil Sci., 34, 391–403.

    Google Scholar 

  • Persson, H. (1979) Fine-root production, mortality and decomposition in forest ecosystems. Vegetatio, 41, 101–9.

    Google Scholar 

  • Persson, H. (1980) Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden. Okios, 34, 77–87.

    Google Scholar 

  • Peterson, B.J., Howarth, R.W. and Garritt, R.H. (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science, 227, 1361–3.

    PubMed  CAS  Google Scholar 

  • Phillips, J.M. and Hayman, D.S. (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 42, 421–38.

    Google Scholar 

  • Porter, W.M. (1979) The ‘most probable number’ methods for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Austr. J. Soil Res., 17, 515–19.

    Google Scholar 

  • Rambal, S. (1984) Water balance and pattern of root water uptake by a Quercus coccifera evergreen scrub. Oecologia, 62, 18–25.

    Google Scholar 

  • Rennie, R.J. and Rennie, D.A. (1983) Techniques for quantifying N2-fixation in association with nonlegumes under field conditions. Can. J. Microbiol., 29, 1022–35.

    Google Scholar 

  • Richards, D.F., Gaubran, J.H., Garwoli, W.N. and Doly, M.W. (1979) A method for determining root length. Plant Soil, 52, 69–76.

    Google Scholar 

  • Richards, J.H. (1984) Root growth response to defoliation in two Agropyron bunchgrasses: field observations with an improved root periscope. Oecologia, 64, 21–5.

    Google Scholar 

  • Richards, J.H. and Caldwell, M.M. (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73, 486–9.

    Google Scholar 

  • Ringrose-Voase, A.J. and Bullock, P. (1984) The automatic recognition and measurement of soil pore types by image analysis and computer programs. J. Soil Sci., 35, 673–84.

    Google Scholar 

  • Robinson, D. and Rorison, I.H. (1983) A comparison of the responses of Lolium perenne L., Holcus lanatus L. and Deschampsia flexuosa (L.) Trin. to a localized supply of nitrogen. Neu, Phytol., 94, 263–73.

    Google Scholar 

  • Rowse, H.R. and Phillips, D.A. (1974) An instrument for estimating the total length of root in a sample. J. Appl. Ecol., 11, 309–14.

    Google Scholar 

  • Rumbaugh, M.D., Clark, D.H. and Pendry, B.M. (1988) Determination of root mass ratios in alfalfa-grass mixtures using near-infrared reflectance spectroscopy. J. Range Manag., 41, 488–90.

    Google Scholar 

  • Runge, M. (1983) Physiology and ecology of nitrogen nutrition. In Encyclopedia of Plant Physiology, Vol. 12C Physiological Plant Ecology III. Responses to the chemical and biological environment. (eds O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler ). Springer-Verlag, Berlin, pp. 163–200.

    Google Scholar 

  • St. John, T.V., Coleman, D.C. and Reid, C.P.P. (1983) Growth and spatial distribution of nutrient-absorbing organs: selective exploitation of soil heterogeneity. Plant Soil, 71, 487–93.

    Google Scholar 

  • Sanders, J.L. and Brown, D.A. (1978) A new fiber optic technique for measuring root growth of soybeans under field conditions. Agron. J., 70, 1073–6.

    Google Scholar 

  • Savage, M.J. and Cass, A. (1984) Measurement of water potential using in situ thermocouple hygrometers. Adv. Agron., 37, 73–126.

    Google Scholar 

  • Schenck, N.C. (ed.) (1982) Methods and Principles of Mycorrhizal Research, American Society of Phytopathology, St. Paul, MN.

    Google Scholar 

  • Schlesinger, W.H., Fonteyn, P.J. and Marion, G.M. (1987) Soil moisture content and transpiration in the Chihuahuan Desert of New Mexico. J. Arid Environ., 12, 119–26.

    Google Scholar 

  • Shearer, G. and Kohl, D.H. (1978) 15N abundance in N-fixing and non-N-fixing plants. In Mass Spectrometry in Biochemistry and Medicine (ed. A. Frigerio), Plenum Press, New York, Vol. 1, pp. 605–22.

    Google Scholar 

  • Shearer, G.B. and Kohl, D.H. (1986) N2-fixation in field settings: Estimations based on natural 15N abundance. Austr. J. Plant Physiol., 13, 699–756.

    CAS  Google Scholar 

  • Shearer, G.B. Kohl, D.H. and Chien, S.H. (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci. Soc. Am. J., 42, 899–902.

    CAS  Google Scholar 

  • Shearer, G.B., Kohl, D.H. and Harper, J.E. (1980) Distribution of 15N among plant parts of noduIating and non-nodulating isolines of soybeans. Plant Physiol., 66, 57–60.

    PubMed  CAS  Google Scholar 

  • Shearer, G., Kohl, D.H., Virginia, R.A., Bryan, B.A., Skeeters, J.L., Nilsen, E.T., Sharifi, M.R. and Rundel, P.W. (1983) Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran Desert ecosystems. Oecologia, 56, 365–73.

    Google Scholar 

  • Shierlaw, J. and Alston, A.M. (1984) Effect of soil compaction on root growth and uptake of phosphorus. Plant Soil, 77, 15–28.

    CAS  Google Scholar 

  • Shinkle, J.R. and Briggs, W.R. (1985) Physiological mechanism of the auxin-induced increase in light sensitivity of phytochrome-mediated growth responses in Avena coleoptile sections. Plant Physiol., 79, 349–56.

    PubMed  CAS  Google Scholar 

  • Silvester, W.B. (1983) Analysis of N2 fixation. In Biological Nitrogen Fixation in Forest Ecosystems. Foundations and Applications (eds J.C. Gordon and C.T. Wheeler ), Junk, Boston, pp. 172–212.

    Google Scholar 

  • Sims, P.L. and Singh, J.S. (1978) The structure and function of ten western North American grasslands. II. Intraseasonal dynamics in primary producer compartments. J. Ecol., 66, 547–72.

    Google Scholar 

  • Singh, J.S. and Coleman, D.C. (1973) A technique for evaluating functional root biomass in grassland ecosystems. Can. J. Bot., 51, 1867–70.

    Google Scholar 

  • Singh, J.S., Lauenroth, W.K., Hunt, H.W. and Swift, D.M. (1984) Bias and random errors in estimators of net root production: A simulation approach. Ecology, 65, 1760–4.

    Google Scholar 

  • Sisson, W.B. (1983) Carbon balance of Yucca elata Engelm. during a hot and cool period in situ. Oecologia, 57, 352–60.

    Google Scholar 

  • Smith, G.W. and Skipper, H.D. (1979) Comparison of methods to extract spores of vesiculararbuscular mycorrhizal fungi. Soil Sci. Soc. Am. J., 43, 722–5.

    Google Scholar 

  • Smucker, A.J.M., McBurney, S.L. and Srivastava, A.K. (1982) Quantitative separation of roots from compacted soil profiles by the hydro-pneumatic elutriation system. Agron. J., 74, 500–3.

    Google Scholar 

  • Svejcar, T.J. and Boutton, T.W. (1985) The use of stable carbon isotope analysis in rooting studies. Oecologia, 67, 205–8.

    Google Scholar 

  • Svoboda, J. and Bliss, L.C. (1974) The use of autoradiography in determining active and inactive roots in plant production studies. Arct. Alp. Res., 6, 257–60.

    Google Scholar 

  • Taylor, H.M. and Boehm, W. (1976) Use of acrylic plastic as rhizotron windows. Agron. J., 68, 693–4.

    Google Scholar 

  • Tennant, D. (1975) A test of modified line intersect method of estimating root length. J. Ecol., 63, 995–1001.

    Google Scholar 

  • Toth, R. and Toth, D. (1982) Quantifying vesiculararbuscular mycorrhizae using a morphometric technique. Mycologia, 74, 182–7.

    Google Scholar 

  • Topp, G.C. and Davis, J.L. (1985) Measurement of soil water content using time-domain reflectometry (TDR): A field evaluation. Soil Sci. Soc. Am. J., 49, 19–24.

    Google Scholar 

  • Upchurch, D.R. (1985) Relationship between observations in mini-rhizotrons and true root length density, Ph.D. dissertation, Texas Technical University.

    Google Scholar 

  • Upchurch, D.R. and Ritchie, J.R. (1983) Root observations using a video recording system in mini-rhizotrons. Agron. J., 75, 1009–15.

    Google Scholar 

  • Upchurch, D.R. and Ritchie, J.R. (1984) Battery-operated color video camera for root observations in mini-rhizotrons. Agron. J., 76, 1015–17.

    Google Scholar 

  • van Noordwijk, M., de Jager, A. and Floris, J. (1985) A new dimension to observations in minirhizotrons: A stereoscopic view on root photographs. Plant Soil, 86, 447–53.

    Google Scholar 

  • Viehmeyer, F.J. (1929) An improved soil-sampling tube. Soil Sci., 27, 147–52.

    Google Scholar 

  • Vincent, J.M. (1970) A Manual for the Practical Study of Root-nodule Bacteria, IBP Handbook No. 15, Blackwell Science Publication, Oxford.

    Google Scholar 

  • Virginia, R.A., Baird, L.M., LaFavre, J.S., Jarrell, W.M., Bryan, B.A. and Shearer, G. (1984) Nitrogen fixation efficiency, natural 15N abundance, and morphology of mesquite (Prosopis glandulosa) root nodules. Plant Soil, 79, 273–84.

    CAS  Google Scholar 

  • Virginia, R.A. and Delwiche, C.C. (1982) Natural 15N abundance of presumed N2-fixing and nonN2-fixing plants from selected ecosystems. Oecologia, 54, 317–25.

    Google Scholar 

  • Virginia, R.A., Jarrell, W.M., Rundel, P.W., Shearer, G. and Kohl, D.H. (1989) The use of variation in the natural abundance of 15N to assess symbiotic N2-fixation by woody plants. In Stable Isotopes in Ecological Research (eds P.W. Rundel, J.R. Ehleringer and K.A. Nagy), Ecological Studies vol. 68, Springer-Verlag, New York, pp. 375–94.

    Google Scholar 

  • Virginia, R.A., Jenkins, M.B. and Jarrell, W.M. (1986) Depth of root symbiont occurrence in soil. Biol. Fertil. Soils, 2, 127–30.

    Google Scholar 

  • Vogt, K.A., Grier, C.C., Gower, S.T., Sprugel, D.G. and Vogt, D.J. (1986) Overestimation of net root production: a real or imaginary problem? Ecology, 67, 577–9.

    Google Scholar 

  • Voorhees, W.B. (1976) Root elongation along a soil-plastic container interface. Agron. J., 68, 143.

    Google Scholar 

  • Vos, J. and Groenwold, J. (1983) Estimation of root density by observation tube and endoscope. Plant Soil, 74, 295–300.

    Google Scholar 

  • Wang, C.H., Willis, D.L. and Loveland, W.D. (1975) Radiotracer Methodology in the Biological, Environmental, and Physical Sciences, Prentice Hall, Englewood Cliffs, New Jersey, 480 pp.

    Google Scholar 

  • White, S.W.C., Cook, E.R., Lawrence, J.R. and Broecker, W.S. (1985) The D/H ratios of sap in trees: Implications for water source and tree ring D/H ratios. Geochim. Cosmochim. Acta, 49, 237–46.

    CAS  Google Scholar 

  • Wiebe, H.H., Brown, R.W. and Barker, J. (1977) Temperature gradient effect on in situ hygrometer measurement of water potential. Agron. J., 69, 933–9.

    Google Scholar 

  • Wiebe, H.H., Campbell, G.S., Gardner, W.H., Rawlins, S.L., Cary, J.G. and Brown, R.W. (1971) Measurement of plant and soil water status. Utah Agric. Exp. Sta. Bull., 484.

    Google Scholar 

  • Wullstein, L.H. and Harker, A. (1982) Nonconfirmation of nodulation in Artemisia ludoviciana. Am. J. Bot., 69, 160–2.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Caldwell, M.M., Virginia, R.A. (2000). Root systems. In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (eds) Plant Physiological Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9013-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9013-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-40730-7

  • Online ISBN: 978-94-010-9013-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics