Skip to main content

Crassulacean acid metabolism

  • Chapter
Plant Physiological Ecology

Abstract

Plants with crassulacean acid metabolism (CAM) are rarely the most abundant in plant communities, and rarely attain high biomass, but they are capable of an extraordinary array of physiological activities in a wide range of environments. The peculiar morphology and nocturnal physiology of CAM plants have attracted the curiosity of plant biologists for many years. The most comprehensive syntheses of the environmental biology of desert CAM plants are those of Gibson and Nobel (1986) and Nobel (1988). Epiphytic CAM plants are dealt with by Smith et al. (1986a) and aquatic CAM plants by Boston and Adams (1986). Recent reviews of the metabolic activities of CAM plants have delineated phases of the complex nocturnal-diurnal metabolic cycle and component biochemical and physiological events (Kluge and Ting, 1978; Osmond, 1978; Osmond and Holtum, 1981). However, a decade or so of investigation of these plants in many habitats has uncovered a bewildering array of exceptions and variations. In response to this we now have a new set of terminologies (Cockburn, 1985), pleas that ‘more representative studies are needed from diverse taxa before a generalized theory of CAM will be forthcoming’ (Ting, 1985) and for the need to integrate ecological, physiological and biochemical studies (Lüttge, 1987). Obviously, further studies of the physiological ecology of CAM plants are likely to be most rewarding and this chapter seeks to outline appropriate methodologies for this research. For the most part we will be concerned with modifications of techniques to meet the special problems posed by CAM plant morphology and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo, E., Badilla, I. and Nobel, P.S. (1983) Water relations, diurnal acidity changes and productivity of a cultivated cactus, Opuntia ficus-indica. Plant Physiol., 72, 775–80.

    Article  PubMed  CAS  Google Scholar 

  • Adam , W.W., Nishida, K. and Osmond, C.B. (1986) Quantum yields of CAM plants measured by photosynthetic O2 exchange. Plant Physiol., 81, 297–300.

    Article  Google Scholar 

  • Adams, W.W. and Osmond, C.B. (1988) Internal CO2 supply during photosynthesis of sun and shade grown CAM plants in relation to photoinhibition. Plant Physiol.,86, 117–23.

    Article  PubMed  CAS  Google Scholar 

  • Adams, W.W., Smith, S.D. and Osmond, C.B. (1987a) Photoinhibition of the CAM succulent Opuntia basilaris growing in Death Valley: evidence from 77K fluorescence and quantum yield. Oecologia,71, 221–8.

    Article  Google Scholar 

  • Adams, W.W., Osmond, C.B. and Sharkey, T.D. (1987b) Responses of two CAM species to different irradiances during growth and susceptibility to photoinhibition by high light. Plant Physiol.,83, 213–18.

    Article  CAS  Google Scholar 

  • Austin, R.B. and Longdon, P.C. (1967) A rapid method for the measurement of rates of photosynthesis using 14CO2. Ann. Bot., 31 245–53.

    CAS  Google Scholar 

  • Barcikowski, W. and Nobel, P.S. (1984) Water relations of cacti during desiccation: distribution of water in tissues. Bot. Gaz., 145 110–15.

    Article  Google Scholar 

  • Bartholomew, D.P. and Kadzimin, S.B. (1976) Porometer cup to measure leaf resistance of pineapple. Crop Sci., 16 565–8.

    Article  Google Scholar 

  • Björkman, O. and Demmig, B. (1987) A survey of photon yield of 02 evolution and chlorophyll 77 K fluorescence characteristics among vascular plants of diverse origins. Planta, 170 489–504.

    Article  Google Scholar 

  • Boston, H. and Adams, M.S. (1985) Seasonal diurnal acid rhythms in two aquatic crassulacean acid metabolism plants. Oecologia, 65 573–9.

    Article  Google Scholar 

  • Boston, H. and Adams, M.S. (1986) The contribution of crassulacean acid metabolism to the annual productivity of two aquatic vascular plants. Oecologia, 68 615–22.

    Article  Google Scholar 

  • Cockburn, W. (1985) Variation in photosynthetic acid metabolism in vascular plants: CAM and related phenomena. New Phytol., 101 3–24.

    Article  CAS  Google Scholar 

  • Cockburn, W. and McAuley, A. (1975) The pathway of carbon dioxide fixation in Crassulacean plants. Plant Physiol., 55 87–9.

    Article  PubMed  CAS  Google Scholar 

  • Cockburn, W., Ting, I.P. and Sternberg, L.O. (1979) Relationship between stomatal behavior and internal carbon dioxide concentration in CAM plants. Plant Physiol., 63 1029–32.

    Article  PubMed  CAS  Google Scholar 

  • Critchley, C. and Smillie, R.M. (1981) Leaf chlorophyll fluorescence as an indicator of high light stress (photoinhibition) in Cucumis sativus L. Austr. J. Plant Physiol., 8 133–41.

    Article  CAS  Google Scholar 

  • Crombie, W.M.L. (1952) Oxalic acid metabolism in Begonia semperflorens. J. Exp. Bot., 5 173–83.

    Article  Google Scholar 

  • Delieu, T. and Walker, D.A. (1981) Polarographic measurement of photosynthetic 02 evolution by leaf discs. New Phytol., 89 165–75.

    Article  CAS  Google Scholar 

  • Delieu, T. and Walker, D.A. (1983) Simultaneous measurement of oxygen evolution and chlorophyll fluorescence by leaf discs. Plant Physiol., 73 534–41.

    Article  PubMed  CAS  Google Scholar 

  • Demmig, B. and Björkman, O. (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of 02 evolution in leaves of higher plants. Planta, 171 171–84.

    Article  CAS  Google Scholar 

  • Didden-Zopfy, B. and Nobel, P.S. (1982) High temperature tolerance and heat acclimation of Opuntia bigelovii. Oecologia, 52 176–80.

    Article  Google Scholar 

  • Dinger, B.E. and Patten, D.T. (1974) Carbon dioxide exchange and transpiration in species of Echinocereus (Cactaceae), as related to their distribution within the Pinaleno Mountains, Arizona. Oecologia, 14 389–411.

    Article  Google Scholar 

  • Downton, W.J.S., Berry, J.A. and Seemann, J.R. (1984) Tolerance of photosynthesis to high temperature in desert plants. Plant Physiol., 74 786–90.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw, M.J., Carver, K.A. and Lee, J.A. (1985) Changes in leaf water potential and CAM in Sempervivum montanum and Sedum album in response to water availability in the field. Oecologia, 67 486–92.

    Article  Google Scholar 

  • Ekern, P.C. (1965) Evapotranspirations of pineapple in Hawaii. Plant Physiol., 40 736–9.

    Article  PubMed  CAS  Google Scholar 

  • Field, C. and Mooney, H.A. (1984) Measuring gas exchange of plants in the wet tropics. In Physiological Ecology of Plants of the Wet Tropics (eds E. Medina, H.A. Mooney and C. Vazquez Yanes), Junk, The Hague, pp. 129–38.

    Chapter  Google Scholar 

  • Gerwick, B.C. and Williams III,G.J. (1978) Temperature and water regulation of gas exchange of Opuntia polycantha. Oecologia, 35 149–60.

    Google Scholar 

  • Gibson, A.C. (1982) The anatomy of succulence. In Crassulacean Acid Metabolism (eds I.P. Ting and M. Gibbs), American Society of Plant Physiologists, Rockville, pp. 1–17.

    Google Scholar 

  • Gibson, A.C. and Nobel, P.S. (1986) The Cactus Primer, Harvard University Press, Cambridge, MA, 286 pp.

    Google Scholar 

  • Green, J.M. and Williams III, G.J. (1982) The subdominant status of Echinocereus viridiflorus and Mammillaria vivipara in the short grass prairie: the role of temperature and water effects on gas exchange. Oecologia, 52 43–8.

    Article  Google Scholar 

  • Griffiths, H., Lüttge, U., Stimmel, K.-H., Crook, C.E., Griffiths, N.M. and Smith, J.A.C. (1986) Comparative ecophysiology of CAM and C3 bromeliads. III.Environmental influences on CO2 assimilation and transpiration. Plant, Cell Environ., 9 385–94.

    Article  Google Scholar 

  • Heyne, B. (1815) On the deoxidation of the leaves of Cotyledon calycina. Trans. Linn. Soc. London, 11 213–15.

    Article  Google Scholar 

  • Hohorst, H.J. (1965) L-malate, determination with malate dehydrogenase and DPN. In Methods of Enzymatic Analysis (ed. H.U. Bergmeyer), Academic Press, London, pp. 328–34.

    Google Scholar 

  • Jones, M.B. (1975) The effect of leaf age on leaf resistance on CO2 exchange of the CAM plant Bryophyllum fedtschenkoi. Planta, 123 91–6.

    Google Scholar 

  • Johnson, H.B., Rowlands, P.G. and Ting, I.P. (1979) Tritium and carbon-14 double isotope porometer for simultaneous measurements of transpiration and photosynthesis. Photosynthetica, 13 409–18.

    Google Scholar 

  • Kausch, W. (1965) Beziehungen zwischen Wurzel-wachstum, Transpiration und CO2-Gaswechsel bei einigen Kakteen. Planta, 66 228–38.

    Article  Google Scholar 

  • Keeley, J.E. and Morton, B.A. (1982) Distribution of diurnal acid metabolism in submerged aquatics outside the genus Isoetes. Photosynthetica, 16 546–53.

    CAS  Google Scholar 

  • Keeley, J.E., Osmond, C.B. and Raven, J.A. (1984) Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature, London, 310 694–95 (and correspondence 314, 200).

    Article  CAS  Google Scholar 

  • Kitajima, M. and Butler, W.L. (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta, 376 105–15.

    Article  PubMed  CAS  Google Scholar 

  • Kluge, M. and Ting, I.P. (1978) Crassulacean Acid Metabolism: An Analysis of an Ecological Adaptation, Ecological Studies, Vol. 30, Springer-Verlag, Heidelberg, 209 pp.

    Google Scholar 

  • Krause, G.H. and Weis, E. (1984) Chlorophyll fluorescence as a tool in plant physiology. II Interpretation of fluorescence signals. Photo-synth. Res., 5 139–57.

    Article  CAS  Google Scholar 

  • Lange, O.L. and Medina, E. (1979) Stomata of the CAM plant Tillandsia recurvata respond directly to humidity. Oecologia, 40 357–63.

    Article  Google Scholar 

  • Lange, O.L., Schulze, E.-D., Kappen, L., Evenari, M. and Buschbom, U. (1975) CO2 exchange pattern under natural conditions of Caralluma negevensis, a CAM plant of the Negev desert. Photosynthetica, 9 318–26.

    Google Scholar 

  • Lange, O.L. and Zuber, M. (1977) Frerea indica, a stem succulent CAM plant with deciduous C3 leaves. Oecologia, 31 67–72.

    Article  Google Scholar 

  • Lüttge, U. and Ball, E. (1974) Proton and malate fluxes in cells of Bryophyllum daigremontianum leaf slices in relation to potential osmotic pressure of the medium. Zeitschr. Pflanzenphysiol., 73 326–38.

    Google Scholar 

  • Lüttge, U. and Ball, E. (1977) Water relations parameters of the CAM plant Kalanchoë daigremontiana in relation to diurnal malate oscillations. Oecologia, 31 85–94.

    Article  Google Scholar 

  • Lüttge, U., Ball, E., Kluge, M. and Ong, B.L. (1986a) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol. Veg., 24 285–90.

    Google Scholar 

  • Lüttge, U., Stimmel, K.-H., Smith, J.A.C. and Griffiths, H. (1986b) Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. Plant, Cell Environ., 9 377–84.

    Article  Google Scholar 

  • Lüttge, U. (1987) Carbon dioxide and water demand: Crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol., 106 593–629.

    Article  Google Scholar 

  • MacDougal, D.T. and Spalding, E.S. (1910) The Water Balance of Succulent Plants, Carnegie Institution of Washington Publication no. 141, 77 pp.

    Google Scholar 

  • Martin, C.E., Christensen, N.L. and Strain, B.R. (1981) Seasonal patterns of growth, tissue acid fluctuations, and 14CO2 uptake in the crassulacean acid metabolism epiphyte Tillandsia usneoides L. (Spanish moss). Oecologia, 49 322–8.

    Article  Google Scholar 

  • McWilliams, E.L. (1970) Comparative rates of dark CO2 uptake and acidification in Bromeliaceae, Orchidaceae and Euphorbiaciae. Bot. Gaz., 131 285–90.

    Article  Google Scholar 

  • Medina, E., Delgado, M., Troughton, J.H. and Medina, J.D. (1977) Physiological ecology of CO2 fixation in Bromeliaceae. Flora, 166 137–52.

    CAS  Google Scholar 

  • Medina. E, and Osmond, C.B. (1981) Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoë daigremontiana. Austr. J. Plant Physiol., 8 641–9 (and corrigendum 12 212.)

    Google Scholar 

  • Medina, E. and Troughton, J.H. (1974) Dark CO2 fixation and the carbon isotope ratio in Bromeliaceae. Plant Sci. Lett., 2 357–62.

    Article  CAS  Google Scholar 

  • Meinzer, F.C. and Rundel, P.W. (1973) Crassulacean acid metabolism and water use efficiency in Echeveria pumila. Photosynthetica, 7 358–64.

    CAS  Google Scholar 

  • Milburn, T.R., Pearson, D.J. and Ndegwe, N.A. (1968) Crassulacean acid metabolism under natural tropical conditions. New Phytol., 67 883–97.

    Article  CAS  Google Scholar 

  • Morrow, P.A. and Slatyer, R.O. (1971) Leaf temperature effects of measurements of diffusive resistance to water vapor transfer. Plant Physiol.,47 559–61.

    Article  PubMed  CAS  Google Scholar 

  • Neales, T.F. (1975) The gas exchange patterns of CAM plants. In Environmental and Biological Control of Photosynthesis (ed. R. Marcelle), Junk, The Hague, pp. 299–310.

    Chapter  Google Scholar 

  • Neales, T.F., Hartney, V.J. and Patterson, A.A. (1968) Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes. Nature, London, 219 469–72.

    Article  Google Scholar 

  • Nierhaus, D. and Kinzel, H. (1971) Vergleichende Untersuchungen über die organischen Säuren in Blättern höherer. Pflanz. Zeitschr. Pflanzenphysiol., 64 107–23.

    CAS  Google Scholar 

  • Nishida, K. (1963) Studies on stomatal movement of crassulacean plants in relation to acid metabolism. Physiol. Plant., 16 281–98.

    Article  CAS  Google Scholar 

  • Nobel, P.S. (1976) Water relations and photo-synthesis of a desert CAM plant Agave deserti. Plant Physiol., 61 510–14.

    Article  Google Scholar 

  • Nobel, P.S. (1977) Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert. Oecologia, 27 117–33.

    Article  Google Scholar 

  • Nobel, P.S. (1983) Spine influences on PAR interception, stern temperature, and nocturnal acid accumulation by cacti. Plant,Cell Environ., 6 153–9.

    Article  Google Scholar 

  • Nobel, P.S. (1984) Productivity of Agave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters. Oecologia, 64 1–7.

    Article  Google Scholar 

  • Nobel, P.S. (1985) PAR, water, and temperature limitations on the productivity of cultivated Agave fourcroydes (Henequen). J. Appl. Ecol., 22 157–73.

    Article  Google Scholar 

  • Nobel, P.S. (1988) Environmental Biology of Agaves and Cacti, Cambridge University Press, Cambridge, 270 pp.

    Google Scholar 

  • Nobel, P.S. and Hartsock, T.L. (1978) Resistance analysis of nocturnal carbon dioxide uptake by a Crassulacean acid metabolism succulent, Agave deserti. Plant Physiol.,61 510–14.

    Article  CAS  Google Scholar 

  • Nobel, P.S. and Hartsock, T.L. (1983) Relationships between photosynthetically active radiation, nocturnal acid accumulation and CO2 uptake for a crassulacean acid metabolism plant Opuntia ficus-indica. Plant Physiol., 71 71–5.

    CAS  Google Scholar 

  • Nobel, P.S. and Hartsock, T.L. (1986) Temperature, water, and PAR influences on predicted and measured productivity of Agave deserti at various elevations. Oecologia, 68 181–5.

    Article  Google Scholar 

  • Nobel, P.S. and Jordan, P.W. (1983) Transpiration stream of desert species: resistances and capacitances for a C3, a C4, and a CAM plant. J. Exp. Bot., 34 1379–91.

    Article  Google Scholar 

  • Nobel, P.S. and Meyer, S.E. (1985) Field productivity of a CAM plant, Agave salmiana, estimated using daily acidity change under various environmental conditions. Physiol. Plant., 65 397–404.

    Article  CAS  Google Scholar 

  • Nobel, P.S. and Quero, E. (1986) Environmental productivity indices for a CAM plant in the Chihuahuan Desert, Agave lecheguilla. Ecology, 67 1–11.

    Google Scholar 

  • Nobel, P.S. and Sanderson, J. (1984) Rectifier-like activities of two desert succulents. J. Exp. Bot., 35 727–37.

    Article  Google Scholar 

  • Nobel, P.S. and Smith, S.D. (1983) High and low temperature tolerances and their relationships to distribution of agaves. Plant, Cell Environ., 6 711–19.

    Google Scholar 

  • Nobel, P.S., Zaragoza, L.J. and Smith, W.K. (1975) Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectanthus parviflorus Henckel. Plant Physiol., 55 1067–70.

    Article  PubMed  CAS  Google Scholar 

  • Osmond, C.B. (1976a) Ion absorption and carbon metabolism in cells of higher plants. In Transport in Plants. Encyclopedia of Plant Physiology, New Series (eds U. Lüttge and M.G. Pitman), Springer-Verlag, Berlin, Vol. IIA, pp. 347–72.

    Google Scholar 

  • Osmond, C.B. (1976b) CO2 assimilation and dissimilation in the light and dark in CAM plants. In CO 2 Metabolism and Plant Productivity (eds R.H. Burris and C.C. Black), University Park Press, Baltimore, pp. 217–33.

    Google Scholar 

  • Osmond, C.B. (1978) Crassulacean acid metabolism: a curiosity in context. Ann. Rev. Plant Physiol., 29 374–414.

    Article  Google Scholar 

  • Osmond, C.B. (1982) Carbon cycling and the stability of the photosynthetic apparatus in CAM. In Crassulacean Acid Metabolism (eds I.P. Ting and M. Gibbs), American Society of Plant Physiologists, Rockville, pp. 112–27.

    Google Scholar 

  • Osmond, C.B., Austin, M.P., Berry, J.A., Billings, W.D., Boyer, J.S., Dacey, J.W.H., Nobel, P.S., Smith, S.D. and Winner, W.E. (1987) Stress physiology in the context of physiological ecology. Bioscience, 37 38–48.

    Article  Google Scholar 

  • Osmond, C.B., Bender, M.M. and Burris, R.H. (1976) Pathways of CO2 fixation in the CAM plant Kalanchoë daigremontiana. III. Correlation with 813C value during growth and water stress. Austr. J. Plant Physiol., 3 787–89 (and corrigendum 4 689).

    Google Scholar 

  • Osmond, C.B. and Björkman, O. (1975) Pathways of CO2 fixation in the CAM plant Kalanchoë daigremontiana II. Effects of 02 and CO2 concentration on light and dark CO2 fixation. Austr. J. Plant Physiol., 2 155–62.

    CAS  Google Scholar 

  • Osmond, C.B. and Holtum, J.A.M. (1981) Crassulacean acid metabolism. In The Biochemistry of Plants (eds M.D. Hatch and N.K. Boardman), Academic Press, New York, Vol. 8, pp. 283–328.

    Google Scholar 

  • Osmond, C.B., Ludlow, M.M., Davis, R., Cowan, I.R., Powles, S.B. and Winter, K. (1979b) Stomata] responses to humidity in Opuntia inermis in relation to control of CO2 and H2O exchange patterns. Oecologia, 41 65–76.

    Article  Google Scholar 

  • Osmond, C.B., Nott, D.L. and Firth, P.M. (1979a) Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in Eastern Australia. Oecologia, 40 331–50.

    Article  Google Scholar 

  • Osmond, C.B., Winter, K. and Ziegler, H. (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In Encyclopedia of Plant Physiology, New Series. (eds O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler), Springer-Verlag, Berlin, Vol. 12B, pp. 497–547.

    Google Scholar 

  • Powles, S.B. (1984) Photoinhibition of photosynthesis by visible light. Annu. Rev. Plant Physiol.,35, 15–44.

    Article  CAS  Google Scholar 

  • Powles, S.B. and Björkman, O. (1982) Photoinhibition of photosynthesis: effect on chlorophyll fluorescence at 77K in intact leaves and in chloroplant membranes of Nerium oleander. Planta, 156, 97–107.

    CAS  Google Scholar 

  • Pucher, G.W., Vickery, H.B., Abrahams, M.D. and Leavenworth, C.S. (1949) Studies on the metabolism of crassulacean plants: diurnal variation in the organic acids and starch in excised leaves of Bryophyllum calycinum. Plant Physiol., 24, 610–20.

    Article  PubMed  CAS  Google Scholar 

  • Rayder, L. and Ting, I.P. (1983) Shifts in the carbon metabolism of Xerosicyos danguyi H. Humb. (Cucurbitaceae) brought about by water stress. Plant Physiol., 72, 606–10.

    Article  PubMed  CAS  Google Scholar 

  • Ruess, B.R. and Eller, B.M. (1985) The correlation between crassulacean acid metabolism and water uptake in Senecio smedley-woodii. Planta, 166, 57–66.

    Article  CAS  Google Scholar 

  • Sale, P.J.M. and Neales, T.F. (1980) Carbon dioxide assimilation by pineapple plants, Ananas comosus (L.) Merr. I. Effects of daily irradiance. Austr. J. Plant Physiol., 7, 363–73.

    Article  Google Scholar 

  • Schreiber, U. (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology I. The measuring system. Photosynth. Res., 4, 361–73.

    CAS  Google Scholar 

  • Schreiber, U. and Berry, J.A. (1977) Heat-induced changes in chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta, 136, 233–8.

    Article  CAS  Google Scholar 

  • Schreiber, U., Grobermann, L. and Vidaver, W. (1975) Portable solid-state fluorometer for the measurement of chlorophyll fluorescence induction in plants. Rev. Sci. Instrum., 46, 538–42.

    Article  Google Scholar 

  • Schreiber, U., Schliwa, U. and Bilger, W. (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter. Photosyn. Res., 10, 51–62.

    Article  CAS  Google Scholar 

  • Sharp, R.E., Matthews, M.A. and Boyer, J.S. (1984) Kok effect and the quantum yield of photosynthesis. Plant Physiol.,75, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, R. (1983a) Water relations of tropical epiphytes. I. Relationships between stomatal resistance, relative water content and the components of water potential. J. Exp. Bot., 149, 1652–63.

    Article  Google Scholar 

  • Sinclair, R. (1983b) Water relations of tropical epiphytes. II. Performance during droughting. J. Exp. Bot., 149, 1664–75.

    Article  Google Scholar 

  • Smillie, R.M. and Hetherington, S.E. (1983) Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Chilling, freezing, ice-cover, heat and light. Plant Physiol., 72, 1043–50.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.A.C., Griffiths, H., Bassett, M. and Griffiths, N.M. (1985) Day-night changes in the leaf water relations of epiphytic bromeliads in the rainforests of Trinidad. Oecologia,67, 47585.

    Article  Google Scholar 

  • Smith, J.A.C., Griffiths, H. and Lüttge, U. (1986a) Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeliaceae in Trinidad. Plant Cell Environ., 9, 359–76.

    Article  Google Scholar 

  • Smith, J.A.C., Griffiths, H., Lüttge, U., Crook, C.E., Griffiths, N.M. and Stimmel, K.-H. (1986b) Comparative ecophysiology of CAM and C3 bromeliads. IV. Plant water relations. Plant, Cell Environ., 9, 395–410.

    Article  Google Scholar 

  • Smith, J.A.C. and Lüttge, U. (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta, 163, 272–82.

    Article  CAS  Google Scholar 

  • Smith, S.D., Didden-Zopfy, B. and Nobel, P.S. (1984) High temperature responses of North American cacti. Ecology,65, 643–51.

    Article  Google Scholar 

  • Steudle, E., Smith, J.A.C. and Lüttge, U. (1980) Water-relation parameters of individual mesophyll cells of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Plant Physiol., 66, 1155–63.

    Article  PubMed  CAS  Google Scholar 

  • Szarek, S.R., Johnson, H.B. and Ting, I.P. (1973) Drought adaptation in Opuntia basilaris. Significance of recycling carbon through crassulacean acid metabolism. Plant Physiol., 52, 539–41.

    Article  PubMed  CAS  Google Scholar 

  • Szarek, S.R. and Ting, I.P. (1974) Seasonal patterns of acid metabolism and gas exchange in Opuntia basilaris. Plant Physiol., 54, 76–81.

    Article  PubMed  CAS  Google Scholar 

  • Teeri, J.A., Tonsor, S.J. and Turner, M. (1981) Leaf thickness and carbon isotope composition in the Crassulaceae. Oecologia, 50, 367–9.

    Article  Google Scholar 

  • Ting, I.P. (1985) Crassulacean acid metabolism. Annu. Rev. Plant Physiol., 36, 595–622.

    Article  CAS  Google Scholar 

  • Ting, I.P. and Hanscom III, Z. (1977) Induction of acid metabolism in Portulacaria afra. Plant Physiol.,59, 511–14.

    Article  PubMed  CAS  Google Scholar 

  • Vernon, L.P. (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal. Chem.,32, 1144–50.

    Article  CAS  Google Scholar 

  • von Willert, D.J., Brinckmann, E., Scheitler, B. and Eller, B.M. (1985) Availability of water controls crassulacean acid metabolism in succulents of the Richtensveld (Namib Desert, South Africa). Planta, 164, 44–55.

    Article  Google Scholar 

  • von Willert, D.J., Thomas, D.A., Lobin, W. and Curdts, E. (1977) Ecophysiological investigations in the family Mesembryanthemaceae: occurrence of CAM and ion contents. Oecologia, 29 67–76.

    Article  Google Scholar 

  • Walker, D.A. (1981) Secondary fluorescencekinetics of spinach leaves in relation to the onset of photosynthetic carbon assimilation. Planta, 153 273–8.

    Article  CAS  Google Scholar 

  • Walker, D.A. (1988) The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis, Oxygraphics Ltd, Sheffield.

    Google Scholar 

  • Walker, D.A. and Osmond, C.B. (1986) Measurement of photosynthesis in vivo with a leaf disc electrode: correlations between light dependence of steady state photosynthetic 02 evolution and chlorophyll a fluorescence transients. Proc. R. Soc. London Ser. B, 227 267–80.

    Article  CAS  Google Scholar 

  • Wiebe, H.H. and Al-Saadi, H.A. (1976) Matric bound water of water tissue from succulents. Physiol. Plant., 36 47–51.

    Article  Google Scholar 

  • Winter, K. (1980) Carbon dioxide and water vapor exchange in the crassulacean acid metabolism plant Kalanchoë pinnata during a prolonged light period. Plant Physiol., 66 917–21.

    Article  PubMed  CAS  Google Scholar 

  • Winter, K. (1985) Crassulacean acid metabolism. In Photosynthetic Mechanisms and the Environment (eds J. Barber and N.R. Baker), Elsevier, Amsterdam, pp. 329–87.

    Google Scholar 

  • Winter, K. and Demmig, B. (1987) Reduction state of Q and non-radiative energy dissipation during photosynthesis in leaves of a crassulacean acid metabolism plant, Kalanchoë daigremontiana Hamet et Penn. Plant Physiol., 85 1000–7.

    Article  PubMed  CAS  Google Scholar 

  • Winter, K., Lüttge, U., Troughton, J.H. and Winter, E. (1978) Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia, 25 225–37.

    Article  Google Scholar 

  • Winter, K., Osmond, C.B. and Hubick, K.T. (1986a) Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia. Oecologia, 68 224–30.

    Article  Google Scholar 

  • Winter, K., Schröppel-Meier, G. and Caldwell, M.M. (1986b) Respiratory CO2 as a carbon source for nocturnal acid synthesis at high temperatures in three species exhibiting crassulacean acid metabolism. Plant Physiol., 81 3904.

    Google Scholar 

  • Winter, K., Wallace, B.J., Stocker, G. and Roksandic, Z. (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia, 57, 129–41.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Osmond, C.B., Adams, W.W., Smith, S.D. (2000). Crassulacean acid metabolism. In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (eds) Plant Physiological Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9013-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9013-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-40730-7

  • Online ISBN: 978-94-010-9013-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics