Advertisement

Inhomogeneities in the Ionosphere Measured by Radio Signals from the Beacon Satellite Explorer-22, Emphasizing Satellite Scintillations

  • G. K. Hartmann
Part of the Astrophysics and Space Science Library book series (ASSL, volume 14)

Abstract

Since November 1964 the amplitude of radio signals from the beacon satellite Explorer-22 has been recorded in Lindau for the purpose of obtaining the ionospheric electron content from the Faraday effect [1] and the differential Doppler effect [2]. The frequencies used were 20 MHz, 40 MHz, 41 MHz, 136 MHz and 360 MHz. On a considerable number of occasions the regular Faraday-fading and Doppler-fading effects were distorted or even obscured by other effects. Most of these were due to inhomogeneities in the ionosphere, a few of them (~7%) to inhomogeneities in the troposphere [3]. The recordings obtained in Lindau showed two types of ‘other’ effects, (a) so-called satellite scintillations and (b) effects which were the result of horizontal gradients in the ionosphere. Horizontal gradients are defined as variations in the electron content N within the ionosphere at a constant height h along a path S (dN/dS≠0).

Keywords

Total Electron Content Elevation Angle Radio Signal Electron Content Horizontal Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hartman, G.: 1965, ‘Bestimmung der Elektronendichte zwischen der Erdoberfläche und einem künstlichen Erdsatelliten mit Hilfe des Faraday-Effektes’, AEÜ 19, 207–214.Google Scholar
  2. [2]
    Schmidt, G.: 1966, ‘Bestimmung des Elektroneninhaltes zwischen der Erdoberfläche und einem künstlichen Erdsatelliten mit Hilfe des Differenz-Doppler-Effektes’, AEÜ 20, 374–378.Google Scholar
  3. [3]
    Hartmann, G.: 1967, ‘Die Amplitudenregistrierungen des Satelliten Explorer-22, unter besonderer Berücksichtigung der Effekte, die bei Elevationswinkeln kleiner als 45° auftreten’, Mitt. Max-Planck-Inst. für Aeronomie, Nr. 31.Google Scholar
  4. [4]
    Yeh, K. C. and Swenson, G. W.: 1959, ‘The Scintillation of Radio Signals’, JGR 64, 2281.ADSCrossRefGoogle Scholar
  5. [5]
    Ratcliffe, J. A.: 1956, ‘Some Aspects of Diffraction Theory and Their Application to the Ionosphere’, Rep. Progr. Phys. 19, 188–267.ADSCrossRefGoogle Scholar
  6. [6]
    Aarons, J.: 1963, Radio Astronomical and Satellite Studies of the Atmosphere, North-Holland Publ. Co., Amsterdam, pp. 1–385.Google Scholar
  7. [7]
    Liszka, L. and Egeland, Alv.: 1964, ‘Auroral Zone Ionospheric Research’, Kiruna Geophysical Observatory of the Royal Swedish Academy of Science. Annual Summary Report No. AF 61 (052)–678.Google Scholar
  8. [8]
    Liszka, L.: 1964, ‘A New Method for determining the Altitude of Scintillation producing Irregularities’, Kiruna Geophysical Observatory, Scientific Report No. 8; No. AF 61 (052)–678.Google Scholar
  9. [9]
    Liszka, L.: 1964, ‘An Investigation of the Height of Scintillation producing Irregularities’, Kiruna Geophysical Observatory, Scientific Report No. 7; No. AF 61 (052)–678.Google Scholar
  10. [10]
    Liszka, L.: 1964, ‘A Study of the Scintillation-Rate Spectrum observed in the Auroral Zone’, Kiruna Geophysical Observatory, No. AF 61 (052)–678.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1969

Authors and Affiliations

  • G. K. Hartmann
    • 1
  1. 1.Max-Planck-Institut für AeronomieLindau/HarzGermany

Personalised recommendations