Advertisement

Mathematical Models of Magnetospheric Convection and its Coupling to the Ionosphere

  • Vytenis M. Vasyliunas
Part of the Astrophysics and Space Science Library book series (ASSL, volume 17)

Abstract

The phrase ‘magnetospheric model’ can have several different meanings. Here I am using the term ‘model’ in the sense described by Parker (1968): “We construct idealized and simplified theoretical models for the purpose of demonstrating how the basic laws of physics lead to a certain observed effect.” A model in this sense is a solution of the equations that describe the system under consideration. Obtaining an exact solution of the equations governing a system as complex as the magnetosphere is clearly impossible, and to construct a theoretical model the equations must be simplified (often drastically) to the point of tractability. The aim is to isolate those aspects of the physical situation that are essential to the particular phenomenon one is attempting to understand. One thus proceeds by solving the basic equations under a variety of simplifying assumptions and noting what assumptions are required to reproduce the essential features of the phenomenon under study. Of course, no model will predict in precise quantitative detail all the features of the observations, but then our primary goal is understanding, not forecasting.

Keywords

Field Line Flux Tube Plasma Sheet Ionospheric Current Driving Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfvén, H.: 1939, Kungl. Sv. Vet-Akademiens Handl. III, 18, 3.Google Scholar
  2. Axford, W. I.: 1964, Planetary Space Sci. 12, 45.ADSCrossRefGoogle Scholar
  3. Axford, W. I.: 1969, Rev. Geophys. 7, 421.ADSCrossRefGoogle Scholar
  4. Axford, W. I. and Hines, C. O.: 1961, Can. J. Phys. 39, 1433.MathSciNetADSCrossRefGoogle Scholar
  5. Axford, W. I., Petschek, H. E., and Siscoe, G. L.: 1965, J. Geophys. Res. 70, 1231.ADSzbMATHCrossRefGoogle Scholar
  6. Behannon, K. W.: 1969, GSFC preprint X-616-69-146.Google Scholar
  7. Boström, R.: 1964, J. Geophys. Res. 69, 4983.ADSzbMATHCrossRefGoogle Scholar
  8. Brice, N. M.: 1967, J. Geophys. Res. 72, 5193.ADSCrossRefGoogle Scholar
  9. Carpenter, D. L.: 1966, J. Geophys. Res. 71, 1675.Google Scholar
  10. Dungey, J. W.: 1961, Phys. Rev. Letters 6, 47.ADSCrossRefGoogle Scholar
  11. Fairfield, D. H.: 1963, J. Geophys. Res. 68, 3589.ADSCrossRefGoogle Scholar
  12. Fejer, J. A.: 1953, J. Atmos. Terr. Phys. 4, 184.CrossRefGoogle Scholar
  13. Fejer, J. A.: 1964, J. Geophys. Res. 69, 123.ADSCrossRefGoogle Scholar
  14. Fukushima, N.: 1968, “Equivalence in Ground Geomagnetic Effect of Chapman-Vestine’s and Birkeland-Alfvén’s Electric Current Systems for Polar Magnetic Storms”, preprint.Google Scholar
  15. Gottlieb, B. and Fejer, J. A.: 1967, J. Geophys. Res. 72, 239.ADSCrossRefGoogle Scholar
  16. Iwasaki, N. and Nishida, A.: 1967, Rept. lonosph. Space Res. Japan 21, 17.Google Scholar
  17. Kavanagh, L. D., Freeman, J. W. and Chen, A. J.: 1968, J. Geophys. Res. 73, 5511.ADSCrossRefGoogle Scholar
  18. Kennel, C. F.: 1969, Rev. Geophys. 7, 379.ADSCrossRefGoogle Scholar
  19. Kennel, C. F.: 1970, this volume, p. 257.Google Scholar
  20. Kern, J. W.: 1966, J. Geomag. Geoelectr. 18, 125.CrossRefGoogle Scholar
  21. Nishida, A.: 1966, J. Geophys. Res. 71, 5669.ADSGoogle Scholar
  22. Obayashi, T. and Nishida, A.: 1968, Space Sci. Rev. 8, 3.ADSCrossRefGoogle Scholar
  23. Parker, E. N.: 1957, Phys. Rev. 107, 924.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. Parker, E. N.: 1968, in Earth’s Particles and Fields (ed. by B. M. McCormac), Reinhold Publishing Corporation, New York, p. 357.Google Scholar
  25. Silsbee, H. C. and Vestine, E. H.: 1942, Terr. Mag. Atmos. Elec. 47, 195.CrossRefGoogle Scholar
  26. Siscoe, G. L.: 1964, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., unpublished.Google Scholar
  27. Siscoe, G. L.: 1966, Planetary Space Sci. 14, 947.ADSCrossRefGoogle Scholar
  28. Swift, D. W.: 1967, Planetary Space Sci. 15, 835.ADSCrossRefGoogle Scholar
  29. Swift, D. W.: 1968, Planetary Space Sci. 16, 329.ADSCrossRefGoogle Scholar
  30. Taylor, H. E. and Hones, E. W.: 1965, J. Geophys. Res. 70, 3605.ADSCrossRefGoogle Scholar
  31. Vasyliunas, V. M.: 1968, J. Geophys. Res. 73, 5805.ADSCrossRefGoogle Scholar
  32. Vasyliunas, V. M.: 1969, to be published.Google Scholar
  33. Wescott, E.: 1970, this volume, p. 229.Google Scholar
  34. Wolf, R. A.: 1969, “Theoretical Model for Convective Flow of Plasma in the Magnetosphere”, preprint.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1970

Authors and Affiliations

  • Vytenis M. Vasyliunas
    • 1
  1. 1.Dept. of Physics and Center for Space ResearchMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations