Monte Carlo Models of Star Clusters

  • M. Hénon
Part of the Astrophysics and Space Science Library book series (ASSL, volume 31)


The dynamical evolution of spherical star clusters under the effect of internal encounters is followed numerically using a Monte Carlo procedure. Successive states of the system are computed, separated by a time step which is a fraction of the relaxation time. In any given state, each star is characterized by its total energy and its angular momentum with respect to the centre. Changes in these two quantities from one state to the next are computed by randomly selecting the position of the star on its orbit, randomly choosing a field star, letting the two stars interact, and multiplying the effect by an appropriate factor. This procedure can be shown to reproduce correctly the behaviour of the system as given by the Fokker-Planck equation. The computation is much faster than the exact N-body integration. Multiple-encounter effects are neglected, but this is probably not of serious consequence when N is large.

Some provisional results are presented. Once more it is found that N-body systems develop a very high central density peak. The velocity distribution becomes isotropic in the central parts, radially elongated in the halo. Models started with widely different initial conditions tend to become similar after a few relaxation times. The presence of a tidal field, or a distribution of masses, accelerate the evolution of the system.

A companion paper gives a detailed technical description of the method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarseth, S. J.: 1963, Monthly Notices Roy. Astron. Soc. 126, 223.ADSGoogle Scholar
  2. Aarseth, S. J.: 1966, Monthly Notices Roy. Astron. Soc. 132, 35.ADSGoogle Scholar
  3. Aarseth, S. J.: 1968, private communication.Google Scholar
  4. Aarseth, S. J.: 1972, this volume, p. 88.Google Scholar
  5. Chandrasekhar, S.: 1942, Principles of Stellar Dynamics,Dover Publ.Google Scholar
  6. Hayli, A.: 1967, Bull. Astron. (Paris) 2, 67.Google Scholar
  7. Hawn, M.: 1961, Ann. Astrophys. 24, 369.MathSciNetADSGoogle Scholar
  8. Hénon, M.: 1964, Ann. Astrophys. 27, 83.ADSGoogle Scholar
  9. Hénon, M.: 1965, Ann. Astrophys. 28, 62.ADSGoogle Scholar
  10. Hénon, M.: 1966, Compt. Rend. Acad. Sci. (Paris) 262, 666.Google Scholar
  11. Hénon, M.: 1967, Bull. Astron. (Paris) 2, 91.Google Scholar
  12. Hénon, M.: 1972, this volume, p. 406.Google Scholar
  13. Hénon, M. and Heiles, C.: 1964, Astron. J. 69, 73.ADSCrossRefGoogle Scholar
  14. King, I. R.: 1966, Astron. J. 71, 64.ADSCrossRefGoogle Scholar
  15. Larson, R. B.: 1970a, Monthly Notices Roy. Astron. Soc. 147, 323.ADSGoogle Scholar
  16. Larson, R. B.: 1970b, Monthly Notices Roy. Astron. Soc. 150, 93.ADSGoogle Scholar
  17. Lecar, M.: 1968, Bull. Astron. (Paris) 3, 91.Google Scholar
  18. Lynden-Bell, D. and Wood, R.: 1968, Monthly Notices Roy. Astron. Soc. 138, 495.ADSGoogle Scholar
  19. Rosenbluth, M. N., Mac Donald, W. M., and Judd, D. L.: 1957, Phys. Rev. 107, 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. von Hoemer, S.: 1960, Z. Astrophys. 50, 184.MathSciNetADSGoogle Scholar
  21. von Hoemer, S.: 1963, Z. Astrophys. 57, 47.ADSGoogle Scholar
  22. von Hoemer, S.: 1968, Bull. Astron. (Paris) 3, 147.ADSGoogle Scholar
  23. Widen, R.: 1967, Veröf. Astron. Rechen-Inst. Heidelberg,No. 19.Google Scholar
  24. Woolley, R. v. d. R. and Robertson, D. A.: 1956, Monthly Notices Roy. Astron. Soc. 116, 288.ADSGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1972

Authors and Affiliations

  • M. Hénon
    • 1
  1. 1.Observatoire de NiceFrance

Personalised recommendations