Skip to main content

The Resolution of Zeno’s Metrical Paradox of Extension for the Mathematical Continua of Space and Time

  • Chapter
Philosophical Problems of Space and Time

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 12))

  • 304 Accesses

Abstract

It is a commonplace in the analytic geometry of physical space and time that an extended straight line segment, having positive length, is treated as “consisting of” unextended points, each of which has zero length. Analogously, time intervals of positive duration are resolved into instants, each of which has zero duration.

A detailed clarification and correction of this chapter is given in § 10 of the Appendix and on pp. 352–533 of ch. 16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. S. Luria: “Die Infinitesimaltheorie der antiken Atomisten,” Quellen und Studien zur Geschichte der Mathematik, Astronomie, und Physik (Berlin, 1933), Abteilung B: Studien, II, p. 106.

    Google Scholar 

  2. Aristotle: On Generation and Corruption, Book I, Chap, ii, 316a15–317a17; A. Edel: Aristotle’s Theory of the Infinite (New York: Columbia University Press; 1934), pp. 48–49, 76–78; T. L. Heath: Mathematics in Aristotle (Oxford: Oxford University Press; 1949), pp. 90, 117.

    Google Scholar 

  3. C. B. Boyer: The Concepts of the Calculus (New York: Hafner Publishing Company; 1949), p. 140.

    Google Scholar 

  4. B. Russell: The Philosophy of Leibniz (London: G. Allen & Unwin, Ltd.; 1937 ), p. 114.

    Google Scholar 

  5. P. du Bois-Reymond: Die Allgemeine Funktionentheorie (Tübingen: Lauppische Buchhandlung; 1882), Vol. I, p. 66.

    Google Scholar 

  6. G. Cantor: Gesammelte Abhandlungen, ed. E. Zermelo (Berlin: Julius Springer; 1932), pp. 275, 374.

    Google Scholar 

  7. P. W. Bridgman: “Some Implications of Recent Points of View in Physics,” Revue Internationale de Philosophie, Vol. III, No. 10 (1949), p. 490.

    Google Scholar 

  8. H. Hasse and H. Scholz: Die Grundlagenkrisis der griechischen Mathematik ( Charlottenburg: Pan-Verlag; 1928 ), p. 11.

    Google Scholar 

  9. K. Menger: Dimensionstheorie (Leipzig: B. G. Teubner; 1928), p. 244.

    Google Scholar 

  10. A. Grünbaum: “A Consistent Conception of the Extended Linear Continuum as an Aggregate of Unextended Elements,” Philosophy of Science, Vol. XIX (1952), pp. 290–95

    Google Scholar 

  11. E. V. Huntington: The Continuum and Other Types of Serial Order (2nd ed.; Cambridge: Harvard University Press; 1942), pp. 10, 44.

    Google Scholar 

  12. S. Lefschetz: Introduction to Topology ( Princeton: Princeton University Press; 1949 ), p. 28

    Google Scholar 

  13. H. Cramér: Mathematical Methods of Statistics (Princeton: Princeton University Press; 1946), pp. 11, 19.

    Google Scholar 

  14. R. Courant and H. Robbins: What is Mathematics? (New York: Oxford University Press; 1941), p. 249.

    Google Scholar 

  15. P. R. Halmos: Measure Theory (New York: D. Van Nostrand Company, Inc.; 1950.)

    Google Scholar 

  16. C. Hartshorne and P. Weiss (eds.): The Collected Papers of Charles Sanders Peirce (Cambridge: Harvard University Press; 1935), Vol. VI, para. 125.

    Google Scholar 

  17. P. Tannery: “Le Concept Scientifique du Continu: Zenon d’illee et Georg Cantor,” Revue Philosophique, Vol. XX, No. 2 (1885), pp. 391–92.

    Google Scholar 

  18. Cf. also G. H. Hardy: A Course of Pure Mathematics ( 9th ed.; New York: The Macmillan Company; 1945 ), pp. 145–47.

    Google Scholar 

  19. See E. W. Hobson: The Theory of Functions of a Real Variable (2nd ed.; Cambridge: Cambridge University Press; 1921) Vol. I, pp. 56–57.

    Google Scholar 

  20. B. Russell: Our Knowledge of the External World (London: George Allen & Unwin, Ltd.; 1926), pp. 138, 139–40; my italics.

    Google Scholar 

  21. B. Russell: The Principles of Mathematics (Cambridge: Cambridge University Press; 1903), p. 444; my italics. A similar criticism applies to Dedekind. He maintains that if we postulated a discontinuous space consisting of the algebraic points alone, then “the discontinuity of this space would not be noticed in Euclid’s science, would not be felt at all” (R. Dedekind: Essays on the Theory of Number [Chicago: Open Court Publishing Company; 19011, pp. 37-38). Since the set of algebraic points is still denumerable (A. Fraenkel: Einleitung in die Mengenlehre [New York: Dover Publications, Inc.; 1946], p. 40), the length (measure) of a segment consisting entirely of such points is paradoxically both zero and positive. I therefore cannot follow F. Waismann, who comments approvingly on Dedekind’s statement by saying: “As to physical space one has become accustomed to conceding the justification of this concept” (F. Waismann: Introduction to Mathematical Thinking [New York: F. Ungar Publishing Company; 1951 ], p. 212 ).

    Google Scholar 

  22. For the historical details, see K. von Fritz: “The Discovery of Incommensurability by Hippasus of Metapontum,” Annals of Mathematics, Vol. XLVI (1945).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Grünbaum, A. (1973). The Resolution of Zeno’s Metrical Paradox of Extension for the Mathematical Continua of Space and Time. In: Philosophical Problems of Space and Time. Boston Studies in the Philosophy of Science, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2622-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2622-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-0358-3

  • Online ISBN: 978-94-010-2622-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics