Skip to main content

Aspects of the Finite Element Method as Applied to Aero-Space Structures

  • Conference paper
Astronautical Research 1972

Abstract

A unique combination of aero-spacecraft technology is necessary for the success of the ‘Space Shuttle Program’ which forms the next major manned space flight program in the Western World. The primary design objectives involve analytical problems of so far unseen complexity and magnitude. The parallel burn at lift off involves liquid and solid rocket engines which results in accelerations up to 1.5 g’s. Moreover, during the early atmospheric flight the vehicle will experience severe aerodynamic forces and induced aero elastic effects due to its geometric characteristics. Having achieved Earth orbit, the Shuttle Orbiter will serve a number of functions, involving both low and high power thrusts for different maneuvers. The return flight to Earth is likely to be in the 8000 ms−1 range forming a severe challenge to the analysis since the large scale structure is exposed to extreme environmental conditions. Both the success of a given mission, and the system reliability for an envisaged 100-flight vehicle, depend on the solution of these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argyris, J. H., ‘Energy Theorems and Structural Analysis’, Aircraft Engineering 26(1954), 347, 383; 27(1955), 42, 80, 125, 145; and as book (Butterworths, London, 1960), 5th ed., Plenum Press, New York, 1971.

    Google Scholar 

  2. Argyris, J. H., ‘Recent Advances in Matrix Methods of Structural Analysis’, Progress in Aeronautical Sciences, Pergamon, London, 1964.

    Google Scholar 

  3. Argyris, J. H., ‘Continua and Discontinua’, Opening address to 1st Conference on Matrix Methods of Structural Mechanics, Dayton, Ohio, 1967.

    Google Scholar 

  4. Argyris, J. H. and Scharpf, D. W., ‘Some General Considerations of the Natural Mode Technique’, Part I and II, Aeron. J. Roy. Aeron. Soc.73(1969).

    Google Scholar 

  5. ISD-ISSC Proc. of the Symp. on the Finite Techniques, University of Stuttgart, 1969.

    Google Scholar 

  6. Argyris, J. H., ‘The Impact of the Digital Computer on Engineering Sciences’, Twelfth Lanchester Memorial Lecture, The Aeron. J. Roy. Aeron. Soc.74(1970).

    Google Scholar 

  7. Bushell, D., Almroth, B. O., and Brogan, F., ‘Finite Difference Energy Method for Non-Linear Shell Analysis’, Int. Journal Comp. Struct.1(1971).

    Google Scholar 

  8. McLay, R. W., ‘Completeness and Convergence Properties of Finite Element Displacement Functions - A General Treatment’, AIAA Paper 67–143 (1966).

    Google Scholar 

  9. Walz, J. E., Fulton, R. E., and Cyrus, N. C., ‘Accuracy and Convergence of Finite Element Approximations’, Proc.2nd Int. Conf. on Matrix Methods of Structural Mechanics, Dayton, Ohio, 1968.

    Google Scholar 

  10. Pian, T. H. H. and Tong, P., ‘Basis of Finite Element Methods for Solid Continua’, Int. J. Num. Meth. Eng.1(1969).

    Google Scholar 

  11. Argyris, J. H. and Fried, I., ‘The LUMINA Element for the Matrix Displacement Method’, Aeron. J. Roy. Aeron. Soc.72(1968), 514–517.

    Google Scholar 

  12. Argyris, J. H., Fried, I., and Scharpf, D. W., ‘The HERMES 8 Element for the Matrix Displacement Method’, Aeron. J. Roy. Aeron. Soc.72(1968).

    Google Scholar 

  13. Ergatoudis, I., Irons, B. M., and Zienkiewicz, O. C., ‘Curved Isoparametric Quadrilateral Elements for Finite Element Analysis’, Int. J. Solids Struct.4(1968).

    Google Scholar 

  14. Dunne, P. C., ‘Complete Polynomial’ Displacement Fields for Finite Element Methods’, Aeron. J. Roy. Aeron. Soc.72(1968).

    Google Scholar 

  15. Buck, K. E., ‘Rotationskörper unter beliebiger Belastung’, in K. E. Buck, D. W. Scharpf, E. Stein und W. Wunderlich (eds.), Finite Elemente in der Statik, W. Ernst und Sohn, München, 1972.

    Google Scholar 

  16. Argyris, J. H. and Scharpf, D. W., ‘The SHEBA Family of Shell Elements for the Matrix Displacement Method’, Part I and II, Natural Definition of Geometry, Strains and Stiffness, The Aeron. J. Roy. Aeron. Soc.72, 1968.

    Google Scholar 

  17. Argyris, J. H., Balmer, H., Doltsinis, J. St., and William, K. J., ‘Finite Element Analysis of Thermo-mechanical Problems,’ Paper presented at the 3rd Int. Conf. on Matrix Methods of Structural Mechanics Wright-Patterson Air Force Base, Ohio, 1971. To be published in proceedings.

    Google Scholar 

  18. Argyris, J. H., Faust, G., Roy, J.R, Szimmat, J, Warnke, E.P., and Willam, K.J, ‘Finite Elemente zur Berechnung von Spannbeton-Reaktordruckbehaltern,’ ISD Report No. 137 (1973). Published also in DAtb (1973).

    Google Scholar 

  19. Schrem, E. and Roy, J. R., ‘An Automatic System for Kinematic Analysis’, ASKA Part I, IUTAM Symp. on High Speed Computing of Elastic Structures, Liege, 1970.

    Google Scholar 

  20. Schrem, E., ‘Computer Implementation of the Finite Element Procedure’, Proc. of ONR Symp. on Num. and Computer Methods in Struct. Mech.University of Illinois, Urbana, 1971.

    Google Scholar 

  21. Baumann, E., and Rowe, J., ‘Some ASKA Applications on the B-l Bomber and Space Shuttle’, Private Communication, North American Rockwell, Downey, Cal., 1972.

    Google Scholar 

  22. Washizu, K., Variational Methods in Elasticity and Plasticity, Pergamon Press, 1968.

    MATH  Google Scholar 

  23. Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill Book Co., 1972.

    MATH  Google Scholar 

  24. Argyris, J. H. and Roy, J. R., ‘General Treatment of Structural Modifications’. ASCE 89(1972).

    Google Scholar 

  25. Prager, W., ‘Non-isothermal plastic deformation’, Proc. Kininkl. Nederl. Akad. van Wetenschappen, Amsterdam 61(1958).

    Google Scholar 

  26. Naghdi, P. M., ‘Stress-Strain Relation in Plasticity and Thermo-Plasticity’, in Plasticity, Proc. 2nd Symp. on Naval Struct. Mech., Pergamon, 1960.

    Google Scholar 

  27. Argyris, J. H., ‘Elasto-Plastic Matrix Displacement Analysis of Three-Dimensional Continua’, J. Roy. Aeron. Soc.69(1965).

    Google Scholar 

  28. Argyris, J. H., Scharpf, D. W., and Spooner, J. B., ‘Die elastoplastische Berechnung von allgemeinen Tragwerken und Kontinua’, Ingenieur-Archiv 37(1969). Extended English Version was published also in Proc. 3rd Conf. on Dimensioning, Budapest, 1969.

    Google Scholar 

  29. Zienkiewicz, O. Z., Valliapan, S., and King, I. P., Elasto-Plastic Solutions of Engineering Problems, Initial Stress, Finite Element Approach’, Ing. Num. Meth. Eng.(1969).

    Google Scholar 

  30. Argyris, J. H. and Scharpf, D. W., ‘Methods of Elastoplastic Analysis’, Proc. of the Symp. on Finite Element Techniques, Fourth Int. Ship Structures Congress (ISSC) Stuttgart (1969), also published in ZAMP(1972), 517–552.

    Google Scholar 

  31. Argyris, J. H. and Chan, A. S. L., ‘Applications of Finite Elements in Space and Time’, Ingenieur-Archiv 41(1972), 235–257.

    Article  MATH  Google Scholar 

  32. Balmer, H. and Doltsinis, J. St., ‘ASKA Part III-l Material Nonlinearities, Lecture Notes with Example Problems’, ISD Report No. 132, University of Stuttgart, 1972.

    Google Scholar 

  33. Rabotnov, Y. N., Creep Problems in Structural Members, North Holland Publ. Co., 1969.

    MATH  Google Scholar 

  34. Greenbaum, G. A. and Rubinstein, M. F., ‘Creep Analysis of Axisymmetric Bodies Using Finite Elements’, Nuclear Eng. and Design 1(1968).

    Google Scholar 

  35. Mareczek, G., ‘Elastoplastische Berechnung eines Wiedereintrittskörpers unter extrem hoher Temperaturbelastung’, Diplomarbeit am ISD, Stuttgart, 1967.

    Google Scholar 

  36. Archer, J. S., ‘Consistent Mass Matrix for Distributed Systems’, Proc. ASCE 89(1963)

    Google Scholar 

  37. Argyris, J. H., ‘Some Results on the Free-Free Oscillations of Aircraft Type Structures’, Revue Française de Mécanique 15, 3e trimestre (1965).

    Google Scholar 

  38. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Addison-Welsey Publ. Co., Reading, 1957.

    Google Scholar 

  39. Wilson, E. L. and Penzien, J., ‘Evaluation of Orthogonal Damping Matrices’, Int. J. Num. Methods 1(1972).

    Google Scholar 

  40. Newmark, N. M., A Method of Computation for Structural Dynamics’, Proc. ASCE 85(1959)

    Google Scholar 

  41. Clough, R. and Wilson, E. I., ‘Dynamic Finite Element Analysis of Arbitrary Thin Shells’, Proc. Conf. at Palo Alto(1971).

    Google Scholar 

  42. Wilson, E. L., Farhoomand, I., and Bathe, K. J., ‘Nonlinear Dynamic Analysis of Complex Structures’, Int. J. Earthquake Engineering and Structural Dynamics 1(1972).

    Google Scholar 

  43. Argyris, J. H. and Sharpf, D. W., ‘Finite Elements in Time and Space’, Aer. J. Roy. Aeron. Soc.73(1969) 1041–1044, and Nuclear Engineering and Design 10(1969).

    Google Scholar 

  44. Argyris, J. H., Dunne, P. C, and Angelopoulos, T., ‘Non-Linear Oscillations Using the Finite Element Technique’, ISD Report 136, University of Stuttgart, 1972; also published in Comp. Methods in Appl. Mech. of Engineering(1973).

    Google Scholar 

  45. Wilkinson, J. H. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

    MATH  Google Scholar 

  46. Guyan, R., ‘Reduction of Stiffness and Mass Matrices’, AIAA J.3(1965).

    Google Scholar 

  47. Uhrig, R., ‘Reduction of the Number of Unknows in the Displacement Method Applied to Kinetic Problems’, J. Sound and Vibration 4(1966).

    Google Scholar 

  48. Hurty, W. C. and Rubinstein, M. F., Dynamics of Structures, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1964.

    Google Scholar 

  49. Hurty, W. C., ‘Introduction to Modal Synthesis Techniques’, paper presented at the Winter Annual Meeting of the ASME, Washington, D.C., 1971.

    Google Scholar 

  50. Malejannakis, G. A., ‘Anwendung der Matrizenverschiebungsmethode auf erzwungene Sschwin-gungen proportional gedämpfter elastischer Systeme’, ISD Report No. 99 (1971).

    Google Scholar 

  51. Bauer, F. L., ‘Das Verfahren der Treppert-Iteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme’, ZAMP 8(1957).

    Google Scholar 

  52. Jennings, A., ‘A Direct Iteration Method of Obtaining Latent Roots and Vectors of a Symmetric Matrix’, Proc. Camb. Phil. Soc.63(1957).

    Google Scholar 

  53. Brönlund, O. E., ‘Eigenvalues of Large Matrices’, Proc. of the Symp. on Finite Element Techniques, Fourth Int. Ship Struct. Congress (ISSC), Stuttgart, 1969.

    Google Scholar 

  54. Braun, K. A., Brönlund, O. E., Bühlmeier, J., Dietrich, G., Frick, G., Johnsen, T. L., Kiesbauer, H. T., Malejannakis, G. A., Straub, K., and Vallianos, G., DYNAN Lecture Notes with Computational Examples’, ISD Report No. 109, University of Stuttgart, 1971.

    Google Scholar 

  55. Brönlund, O. E., ‘Die simultane Verbesserung einer beliebigen Anzahl genäherter Eigenvektoren von hermiteschen Matrizen’, Dr. -Ing. Thesis, University of Stuttgart, 1972.

    Google Scholar 

  56. Argyris, J. H., Brönlund, O. E., Kayser, L. T., Malejannakis, G. A., and Straub, K., ‘Längsdynamik der 2./3. Stufe der ELDO-Rakete Europa IFG’, ISD Report No. 86, Stuttgart, 1971.

    Google Scholar 

  57. Kiessling, F., ‘Praktische Anwendung der Matrizenverschiebungsmethode auf die Schwingungsanalyse eines Versuchsflugzeugs’, Diplomarbeit am ISD (1971).

    Google Scholar 

  58. DYNAN User’s Reference Manual, ISD Report No. 97 (1971).

    Google Scholar 

  59. Argyris, J. H., Buck, K. E., Scharpf, D. W., and Willam, K. J., ‘Linear and Nonlinear Methods of Structural Analysis’, First Int. Conf. on Struct. Mechanics in Reaktor Technology, Berlin 1971, also published inNuclear Engineering and Design 19(1972).

    Google Scholar 

  60. Bathe, K.J., ‘Solution Method for Large Generalized Eigenvalue Problems in Structural Engineering’, SESM Report 71–20, Dept. of Civil Eng. University of California, Berkely, 1971.

    Google Scholar 

  61. Clough, R. W. and Bathe, K. J., ‘Finite Element Analysis of Dynamic Response’, paper presented at the 2nd US Japanese Seminar(1972).

    Google Scholar 

  62. Fried, I., ‘Discretization and Computational Errors in Higher-Order Finite Elements’, AIAA 9(1971).

    Google Scholar 

  63. Brönlund, O. E. und Bühlmeir, J., ‘Einige Verfahren zur Berechnung von Eigenwerten und Eigen-vekforen von nicht-hermiteschen Matrizen unter besonderer Berücksichtigung von struktur-dyna-mischen Problemen’, ISD Report No. 128, Universität Stuttgart, 1972.

    Google Scholar 

  64. Rubin, S., ‘A General Study of the POGO’, paper preseuted at the 23rd Congress of the IAF, Vienna, 1972.

    Google Scholar 

  65. Valid, R., Ohayon, R., and Berger, H., ‘The Computation of Elastic Tanks Partially Filled with Liquids for the Prevision of POGO Effects’, paper presented at the 23rd Congress of the IAF, Vienna, 1972.

    Google Scholar 

  66. Buck, K. E., ‘Zur Berechnung der Verschiebungen und Spannungen in rotationssymmetrischen Körpern unter beliebiger Belastung’, Dr.-Ing. Thesis, Universität Stuttgart, 1970.

    Google Scholar 

  67. Gloudeman, J. F., ‘Zur numerischen Berechnung der linearen und nicht-linearen Differentialgleichungen mit hermiteschen Interpolationspolynomen’, Dr.-Ing. Theses, Universität Stuttgart, 1970.

    Google Scholar 

  68. Willam, K. J., ‘Finite Element Analysis of Cellular Structures’, Ph. D. Thesis, University of California, Berkeley, 1969.

    Google Scholar 

  69. Grieger, I., ‘INGA, Interaktive graphische Analyse, Benutzerhandbuch’, ISD Report No. 135, University of Stuttgart, 1973.

    Google Scholar 

  70. Scharpf, D. W., ‘Die Frage der Konvergenz bei Berechnung elastoplastisch-deformierbarer Tragwerke und Kontinua’, Dr.-Ing. Thesis, Universität Stuttgart, 1969.

    Google Scholar 

  71. Chan, A. S. L. and Firmin, A., ‘The Analysis of Cooling Towers by the Matrix Finite Element Technique’, Aeron. J. Roy. Aeron. Soc.74(1970).

    Google Scholar 

  72. Argyris, J. H., Buck, K. E., Lochner, N., and Scharpf, D. W., ‘Matrix Displacement Analysis of Plates and Shells, A general Formulation of the Linear Theory’, ISD Report No. 103, University of Stuttgart, 1971.

    Google Scholar 

  73. Argyris, J. H. and Lochner, N., ‘On the Application of the SHEBA Element’. Comp. Meth. in Appl. Mech. and Eng 1(1972).

    Google Scholar 

  74. Argyris, J. H., Haase, M., and Malejannakis, G. A., ‘Natural Geometry of Surfaces with Specific Reference to the Matrix Displacement Analysis of Shells’, ISD Report No. 134, University of Stuttgart, 1973. Also published in Comp. Methods in Appl. Mech. and Eng.(1973).

    Google Scholar 

  75. Bergan, P. G. and Clough, R. W., ‘Convergence Criteria for Iterative Process’, AIAA TN(1972).

    Google Scholar 

  76. Fuchs, G. v., Roy, J. R., and Schrem, E., ‘Hypermatrix Solution of Large Sets of Positive Definite Linear Matrices,’ Comp. Methods in Applied Mech. and Eng.1(1972).

    Google Scholar 

  77. Balmer, H., Doltsinis, J. St., and König, M., ‘Elastoplastic and Creep Analysis with the ASKA Program System’, to be published in Comp. Methods in Appl. Mech. and Eng.(1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

L. G. Napolitano P. Contensou W. F. Hilton

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Argyris, J.H., Doltsinis, J.S., Gloudeman, J.F., Straub, K., Willam, K.J. (1973). Aspects of the Finite Element Method as Applied to Aero-Space Structures. In: Napolitano, L.G., Contensou, P., Hilton, W.F. (eds) Astronautical Research 1972. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2576-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2576-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2578-2

  • Online ISBN: 978-94-010-2576-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics