Advertisement

Magnetospheric DC Electric Fields; Present Knowledge and Outstanding Problems to be Solved during the IMS

  • F. S. Mozer
Part of the Astrophysics and Space Science Library book series (ASSL, volume 57)

Abstract

Present knowledge of the relationships between perpendicular and parallel electric fields in the ionosphere and magnetosphere and of their configurations, sources, and variations is summarised with a view to illustrating some important problems that should be addressed by IMS electric-field research programmes. These problems include determination of the source, morphology, and dynamics of parallel electric fields, the role of parallel electric fields and time-varying magnetic fields in decoupling magnetosphere-ionosphere dynamics, the configuration of the neutral line and its effect on the electric-field coupling from the interplanetary medium to the magnetosphere for arbitrary interplanetary magnetic-field directions, the importance of processes other than reconnection in producing the magnetospheric potential field, and the dynamics of polarisation and other processes that produce low-frequency turbulence and small-scale spatial structure in the electric fields.

Keywords

Magnetic Field Line Auroral Zone Parallel Electric Field Incoherent Scatter Radar Anomalous Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson D., C.L. Fricke, S.A.T. Long, W.F. London [AND] D.C. Ridge, Preliminary analyses of NASA. Optical data obtained in barium ion cloud experiment of September 21, 1971, J. Geophys. Res. 78, 5726 (1973).CrossRefGoogle Scholar
  2. Albert, R.D., Energy and flux variations of nearly monoenergetic auroral electrons, J. Geophys. Res. 72, 5811 (1967).ADSCrossRefGoogle Scholar
  3. Albert, R.D. & P.J. Lindstrom, Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere, Science 170, 1398 (1970).ADSCrossRefGoogle Scholar
  4. Anderson, K.A. & R.P. Lin, Observations of interplanetary field lines in the magnetotail, J. Geophys. Res. 74, 3953 (1969).ADSCrossRefGoogle Scholar
  5. Arnoldy, R.L., Rapid fluctuations of energetic auroral particles, J. Geophys. Res. 76, 8258 (1971).CrossRefGoogle Scholar
  6. Arnoldy, R.L. & L.W. Oioy, Auroral electrons of energy less than 1 keV observed at rocket altitudes, J. Geophys. Res. 78, 2187 (1973).ADSCrossRefGoogle Scholar
  7. Arnoldy, R.L., P.B. Lewis & P.O. Isaacson, Field-aligned auroral electron fluxes, J. Geophys. Res. 79, 4208 (1974).ADSCrossRefGoogle Scholar
  8. Axford, W.I. & C.O. Hines, A unifying theory of high-latitude geophysical pheno¬mena and geomagnetic storms, Canad. J. Phys. 39, 1433 (1961).MathSciNetADSCrossRefGoogle Scholar
  9. Block, L.P. & D.L. Carpenter, Derivation of magnetospheric electric fields from whistler data in a dynamic geomagnetic field, J. Geophys. Res. 79, 2783 (1974).ADSCrossRefGoogle Scholar
  10. Bosqued, J.M., G. Cardona & H. Reme, Auroral electron fluxes parallel to the geomagnetic field lines, J. Geophys. Res. 79, 98 (1974).ADSCrossRefGoogle Scholar
  11. Bruston, P. & U.V., Fahleson, Electric field associated with low altitude particle acceleration in an aurora, submitted to J. Geophys. Res., 1974 Google Scholar
  12. Burke, W.J. & D.L. Reasoner, Observation of plasma flow in the neutral sheet at lunar distance during two magnetic bays, J. Geophys. Res. 78, 6790 (1973).ADSCrossRefGoogle Scholar
  13. Carlson, C.W., Rocket measurements of auroral zone low energy charged particles, PhD Thesis, University of California, Berkeley, 1974.Google Scholar
  14. Carpenter, D.L. & K. Stone, Direct detection by a whistler method of the magneto-spheric electric field associated with a polar substorm, Planet. Space Set. 15, 395 (1967).ADSCrossRefGoogle Scholar
  15. Carpenter, D.L., Keppler Stone, Jan C., Siren & T.L. Crystal, Magnetospheric electric fields deduced from drifting whistler paths, J. Geophys. Res. 77, 2819 (1972).ADSCrossRefGoogle Scholar
  16. Cauffman, D.P. & D.A. Gurnett, Double probe measurements of convection electric fields with the Injun-5 satellite, J. Geophys. Res. 76, 6014 (1971).ADSCrossRefGoogle Scholar
  17. Chapman, S., Vistas in Astron. 2, 912 (1956).ADSCrossRefGoogle Scholar
  18. Chase, L.M., Energy spectra of auroral zone particles, J. Geophys. Res. 75, 7128 (1970).ADSCrossRefGoogle Scholar
  19. Choy, L.W., R.L. Arnoldy, W. Potter, P. Kintner & L.J. Cahill, Jr., Field-aligned particle currents near an auroral arc, J.’Geophys. Res. 76, 8279 (1971).ADSCrossRefGoogle Scholar
  20. Cummings, W.D., R.E. LaQuay, B.J. O’Brien & M. Walt, Rocket-borne measurements of particle fluxes and auroral light, J. Geophys. Res. 71, 1399 (1966).ADSGoogle Scholar
  21. Cummings, W.D. & P.J. Coleman, Simultaneous magnetic field variations at the earth’s surface and at synchronous equatorial distance, 2. Magnetic storms, Radio Sci. 3, 762 (1968).ADSGoogle Scholar
  22. Doupnik, J.R., P.M. Banks, M.J. Baron, C.L. Rino & J. Petriceks, Direct measurements of plasma drift velocities at high magnetic latitudes, J. Geophys. Res. 77, 4268 (1972).ADSCrossRefGoogle Scholar
  23. Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett. 6, 57 (1961).ADSCrossRefGoogle Scholar
  24. Evans, D.S., The observation of near monoenergetic flux of auroral electrons, J. Geophys. Res. 73, 2315 (1968).ADSCrossRefGoogle Scholar
  25. Evans, D.S., Precipitating electron fluxes formed by a magnetic field aligned poten¬tial difference, J. Geophys. Res. 79, 2853 (1974).ADSCrossRefGoogle Scholar
  26. Evans, D.S., B. Maehlum & T. Wede, High latitude observations of field-aligned elec¬tron beams (abstract), EOS Trans. Am. Geophys. Union 53, 731 (1972).Google Scholar
  27. Frank, L.A. & D.A. Gurnett, Distributions of plasmas and electric fields over the auroral zones and polar caps, J. Geophys. Res. 76, 6829 (1971).ADSCrossRefGoogle Scholar
  28. Freeman, J.W., Observation of flow of low energy ions at synchronous altitude and implications for magnetosphere convection, J. Geophys. Res. 73, 4151 (1968).ADSCrossRefGoogle Scholar
  29. Freeman, J.W., C.S. Warren & J.J. Maguire, Plasma flow directions at the magneto- pause on January 13 and 14, 1967, J. Geophys. Res. 73, 5719 (1968).ADSCrossRefGoogle Scholar
  30. Gold, T., Motions in the magnetosphere of the earth, J. Geophys. Res. 64, 1219 (1959).ADSCrossRefGoogle Scholar
  31. Gonzalez, W.D. & F.S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res. 79, 4186 (1974).ADSCrossRefGoogle Scholar
  32. Gurnett, D.A., The earth as a radio source; Terrestrial kilometric radiation, J. Geo- phys. Res. 79, 4227 (1974).ADSCrossRefGoogle Scholar
  33. Haerendel, J. & R. Lüst, Electric fields in the ionosphere and magnetosphere, in Proc. Symposium on Particles and Fields in the Magnetosphere (Ed. B.M. McCor- mac ), pp. 213 - 228, Springer, New York, 1970.Google Scholar
  34. Haerendel, G., Plasma drifts in the auroral ionosphere derived from barium releases, in Earth’s Magnetospheric Processes (Ed. B.M. McCormac ) p. 246, D. Reidel, Dordrecht, Netherlands, 1972a.Google Scholar
  35. Haerendel, G., Electric fields and their effects in the ionosphere, in Solar-Terrestrial Physics (Ed. E. Dyer ), p. 87, D. Reidel, Dordrecht, Netherlands, 1972b.Google Scholar
  36. Haerendel, G., M.C. Kelley, H. Kappler, U.V. Fahleson & F.S. Mozer, Electric field measurements in a major magnetospheric substorm, for publication in J. Geophys. Res. 1975Google Scholar
  37. Heikilla, W.J. & D.L. Mathews, Direct observation of low energy electrons in the disturbed ionospheric E-region, Nature 202, 789 (1964).ADSCrossRefGoogle Scholar
  38. Hones, E.W. Jr., Recent observations relating to the dynamics and origin of the magnetotail plasma sheet, presented at the Nobel Symposium, Kiruna, Sweden, April 1975.Google Scholar
  39. Heppner, J.P., Magnetospheric convection patterns inferred from high latitude activity, in Atmospheric Emissions (Eds. B.M. McCormac & A. Omholt) p. 251, Van Nostrand Reinhold, New York, 1969.Google Scholar
  40. Heppner, J.P., Polar cap electric field distributions related to the interplanetary magnetic field direction, J. Geophys. Res. 77, 4877 (1972).ADSCrossRefGoogle Scholar
  41. Hoffman, R.A. & D.S. Evans, Field aligned electron bursts at high latitudes observed by OGÖ-4, J. Geophys. Res. 73, 6201 (1968).ADSCrossRefGoogle Scholar
  42. Holmgren, L.A., P. Christophersen & W. Riedler, On the pitch angle dependence of auroral electron fluxes in the keV range, Phys. Norv. 4, 85 (1970).Google Scholar
  43. Hones, E.W., Jr., J.R. Asbridge, S.J. Bame, M.D. Montgomery, S. Singer & S.I. Akasofu, Measurements of magnetotail plasma flow made by Vela 4 B, J. Geophys. Res. 77, 5503 (1972).ADSCrossRefGoogle Scholar
  44. Hones, E.W. Jr., A.T.Y. Lui, S.J. Bame & S. Singer, Prolonged tailward flow of plasma in the thinned plasma sheet observed at R approximates 18 earth radii during substorms, J. Geophys. Res. 79, 1385 (1974).ADSCrossRefGoogle Scholar
  45. Hultqvist, B., H. Borg, W. Riedler & P. Christopherson, Observations of magnetic-field aligned anisotropy for 1 and 6 keV positive ions in the upper ionosphere, Planet. Space Sci. 19, 279 (1971).ADSCrossRefGoogle Scholar
  46. Johnstone, A.D. & T.N. Davis, Low-altitude acceleration of auroral electrons during breakup observed by a mother-daughter rocket, J. Geophys. Res. 79, 1416 (1974).ADSCrossRefGoogle Scholar
  47. Kelley, M.C., Relationship between electrostatic turbulence and spread-F, J. Geophys. Res. 77, 1327 (1972).ADSCrossRefGoogle Scholar
  48. Mcllwain, C.E., Substorm injection boundaries, in Magnetospheric Physics (Ed. B.M. McCormac ) p. 143, D. Reidel, Holland, 1974.Google Scholar
  49. Kelley, M.C. & F.S. Mozer, A satellite survey of vector electric fields in the ionosphere at frequencies of 10 to 500 Hertz: 1. Isotropic, high-latitude electrostatic emissions, J. Geophys. Res. 77, 4158 (1972).ADSCrossRefGoogle Scholar
  50. Kelley, M.C., F.S. Mozer & U.V. Fahleson, Electric fields in the nighttime and daytime auroral zone, J. Geophys. Res. 76, 6054 (1971).ADSCrossRefGoogle Scholar
  51. Kindel, J.M. & C.F. Kennel, Topside current instabilities, J. Geophys. Res. 76, 3055 (1971).ADSCrossRefGoogle Scholar
  52. Laaspere, T., W.C. Johnson & L.C. Semprebon, Observations of auroral hiss, LHR noise, and other phenomena in the frequency range 20 Hz - 540 kHz on OGO-6, J. Geophys. Res. 76, 4477 (1971).ADSCrossRefGoogle Scholar
  53. Lampton, M., Daytime observations of energetic auroral-zone electrons, J. Geophys. Res. 72, 5817 (1967).ADSCrossRefGoogle Scholar
  54. Lampton, M.R., R.D. Albert, K.A. Anderson & L.M. Chase, Rocket observations of charged particles in the auroral zone, Paper presented at Birkeland Symposium, Sandefjord, Norway, 1967.Google Scholar
  55. Maehlum, B.N. & H. Moestue, High temporal and spatial resolution observations of low energy electrons by a mother-daughter rocket in the vicinity of two quiescent auroral arcs, Planet. Space Sci 21, 1957 (1973).ADSCrossRefGoogle Scholar
  56. Mahon, H.P., M. Smiddy & R.C. Sagalyn, Parallel B electric fields between 120 km and 165 km, EOS Trans. Am. Geophys. Union 54, 395 (1973).Google Scholar
  57. Mathews, D.L. & T.A. Clark, Simultaneous observations of electron fluxes, ionization, and luminosity in an aurora, Canad. J. Phys. 46, 201 (1968).ADSCrossRefGoogle Scholar
  58. Maynard, N.C. & J.P. Heppner, Variations in electric fields from polar orbiting satellites, in Particles and Fields in the Magnetosphere (Ed. B.M. McCormac ) p. 247, D. Reidel, Dordrecht, Netherlands, 1970.Google Scholar
  59. McDiarmid, I.B., D.C. Rose & E. Budzinski, Direct measurement of charged particles associated with auroral zone radio absorption, Canad. J. Phys. 139, 1888, 1961.ADSCrossRefGoogle Scholar
  60. McCoy, J.E., R.P. Lin, R.E. McGuire, L.M. Chase & K.A. Anderson, Magnetotail electric fields observed from lunar orbit, Preprint, 1974.Google Scholar
  61. Mozer, F.S., Rapid variations of auroral particle fluxes, J. Geophys. Res. 73, 999 (1968).ADSCrossRefGoogle Scholar
  62. Mozer, F.S., Electric field mapping in the ionosphere at the equatorial plane, Planet. Space. Sci. 18, 259 (1970).ADSCrossRefGoogle Scholar
  63. Mozer, F.S., Origin and effects of electric fields during isolated magnetospheric substorms, J. Geophys. Res. 76, 7595 (1971).ADSCrossRefGoogle Scholar
  64. Mozer, F.S., Analyses of techniques for measuring DC and AC electric fields in the magnetosphere, Space Sci. Rev. 14, 272 (1973a).ADSCrossRefGoogle Scholar
  65. Mozer, F.S., Electric fields and plasma convection in the plasmasphere, Rev. Geophys. Space Phys. 11, 755 (1973b).ADSCrossRefGoogle Scholar
  66. Mozer, F.S. & P. Bruston, Observation of the low altitude acceleration of auroral protons, J. Geophys. Res. 71, 2201 (1966a).ADSGoogle Scholar
  67. Mozer, F.S. & P. Bruston, Auroral-zone proton-electron anticorrelations, proton angular distributions and electric fields, J. Geophys. Res. 71, 4461 (1966b).ADSGoogle Scholar
  68. Mozer, F.S. & P. Bruston, Electric field measurements in the auroral ionosphere, J. Geophys. Res. 72, 1109 (1967).CrossRefGoogle Scholar
  69. Mozer, F.S.. & U.V. Fahleson, Parallel and perpendicular electric fields in an aurora, Planet. Space Sci 18, 1563 (1970).ADSCrossRefGoogle Scholar
  70. Mozer, F.S. & D.L. Carpenter, Balloon and VLF whistler measurements of electric fields, equatorial electron density, and precipitating particles during a barium cloud release in the magnetosphere, J. Geophys. Res. 78, 5736 (1973).ADSCrossRefGoogle Scholar
  71. Mozer, F.S., W.D. Gonzalez, F. Bogott, M.C. Kelley [AND] S. Schutz, High latitude elec-trie fields and the three-dimensional interaction between the interplanetary and terrestrial magnetic fields, J. Geophys. Res. 79, 56 (1974).ADSCrossRefGoogle Scholar
  72. Mozer, F.S. & P. Lucht, The average auroral zone electric field, J. Geophys. Res. 79, 1001 (1974).ADSCrossRefGoogle Scholar
  73. Mozer, F.S., R. Serlin, D.L. Carpenter & J. Siren, Simultaneous electric field measurements near L = 4 from conjugate balloons and whistlers, J. Geophys. Res. 79, 3215 (1974).ADSCrossRefGoogle Scholar
  74. O’Brien, B.J. & D.L. Reasoner, Measurements of highly collimated short-duration bursts of auroral electrons and comparison with existing models, J. Geophys. Res. 76, 8258 (1971).ADSCrossRefGoogle Scholar
  75. Ogilvie, K.W., Auroral electron energy spectra,/. Geophys. Res. 73, 2325 (1968).ADSCrossRefGoogle Scholar
  76. Papadapoulos, K. & T. Coffey, Anomalous resistivity in the auroral plasma, J. Geophys. Res. 79, 1558 (1974).ADSCrossRefGoogle Scholar
  77. Paschmann, G., R.G. Johnson, R.D. Sharp & E.G. Shelley, Angular distribution of auroral electrons in the energy range 0.8 to 16keV, J. Geophys. Res. 77, 6111 (1972).ADSCrossRefGoogle Scholar
  78. Prakash, A., Detection of earthward flow of KeV protons in the geomagnetic tail at lunar distances, J. Geophys. Res. 77, 5633 (1972).ADSCrossRefGoogle Scholar
  79. Reasoner, D.L. & C.R. Chappel, Twin payload observations of incident and back- scattered auroral electrons, J. Geophys. Res. 78, 2176 (1973).ADSCrossRefGoogle Scholar
  80. Reme, H. & J.M. Bosqued, Evidence near the auroral ionosphere of a parallel electric field deduced from energy and angular distributions of low-energy particles, J. Geophys. Res. 76, 7682 (1971).ADSCrossRefGoogle Scholar
  81. Rieger, E., G. Haerendel, H. Kappler, J. Lordl, R. Lust & H. Neuss, Magnetospheric convection derived from barium cloud motions at 5 Re altitude, Max Planck Institute Report, 1974.Google Scholar
  82. Russell, C.T. & G. Atkinson, Comments on a paper by J.P. Heppner, ‘Polar cap electric field distributions related to interplanetary magnetic field direction’, J. Geophys. Res. 78, 4001 (1973).ADSCrossRefGoogle Scholar
  83. Ungstrup, E., H. Obayashi, I.B. Iverson & A. Bahnsen, Parallel and perpendicular electric fields in a proton aurora, EOS Trans. Am. Geophys. Union 53, 729 (1972).Google Scholar
  84. Van Allen, J.A. & N.F. Ness, Particle shadowing by the moon, J. Geophys. Res. 74, 71 (1969).ADSCrossRefGoogle Scholar
  85. Wang, C.S. & J.S. Kim, The effect of an electric field induced by a time-dependent ring current on the particle drift motion, Planet. Space Sci. 20, 2039 (1972).ADSCrossRefGoogle Scholar
  86. Wescott, E.M., E.P. Rieger, J.C. Stenbaek-Nielsen, T.N. Davis, H.M. Peck & PJ. Bottoms, L=1.24 conjugate magnetic field line tracing experiments with barium shaped charges, J. Geophys. Res. 79, 159 (1974).ADSCrossRefGoogle Scholar
  87. Westerlund, L.H., The auroral electron spectrum extended to 45 eV, J. Geophys. Res. 74, 351 (1969).ADSCrossRefGoogle Scholar
  88. Whalen, B.A. & I.B. McDiarmid, Observations of magnetic-field-aligned auroral-elec-tron precipitation, J. Geophys. Res. 77, 191 (1972).ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1976

Authors and Affiliations

  • F. S. Mozer
    • 1
  1. 1.Physics Department and Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations