Advertisement

Trapped Particles and Waves, and What can be Learned from Multisatellite Experiments

  • L. R. Lyons
Part of the Astrophysics and Space Science Library book series (ASSL, volume 57)

Abstract

Calculations concerning the pitch-angle diffusion resulting from resonant wave-particle interactions can lead to definitive predictions of equatorial pitch-angle distributions and rates of particle loss as a function of particle energy and L-value. Thus, given simultaneous high-altitude measurements of pitch-angle distributions and low-altitude measurements of precipitating fluxes as a function of energy and L, the importance of proposed wave-particle interactions can be verified or discarded. Since many wave-particle phenomena occur over large spatial and temporal scales, exact simultaneity in longitude and time is not necessary. Simultaneous low and high altitude (preferably nearly equatorial) particle measurements could thus greatly increase our understanding of trapped particles and their effects on the ionosphere. Furthermore, given a verified pitch-angle diffusion mechanism and simultaneous low- and high-altitude measurements, accurate low- to high-altitude mappings of field lines and magnetospheric boundaries (such as the plasmapause) could be obtained.

Keywords

Pitch Angle Cyclotron Resonance Loss Cone Storm Main Phase Radiation Belt Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amundsen, R., F. Söraas, H.R. Lindalen & K. Aarsnes, Pitch angle distributions of 100- to 300-keV protons measured by the Esro IB satellite, J. Geophys. Res. 77, 556 (1972).ADSCrossRefGoogle Scholar
  2. Bernstein, W.B., B. Hultqvist & H. Borg, Some implications of low altitude observations of isotropic precipitation of ring current protons beyond the plasmapause, Planet. Space Sci. 22, 767 (1974).ADSCrossRefGoogle Scholar
  3. Cornwall, J.M., Diffusion processes influenced by conjugate-point wave phenomena, Radio Sci. 3, 740 (1968).ADSGoogle Scholar
  4. Cornwall, J.M., F.V. Coroniti & R.M. Thorne, Turbulent loss of ring current protons, J. Geophys: Res. 75, 4699 (1970).ADSCrossRefGoogle Scholar
  5. Cornwall, J.M., F.V. Coroniti & R.M. Thorne, A unified theory for SAR arc formation at the plasmapause, J. Geophys. Res. 76, 4428 (1971).ADSCrossRefGoogle Scholar
  6. Coroniti, F.V., R.W. Fredricks & R. White, Instability of ring current protons beyond the plasmapause during injection events, J. Geophys. Res. 77, 6243 (1972).ADSCrossRefGoogle Scholar
  7. Evans, D.S., Precipitating electron fluxes formed by a magnetic field aligned potential difference, J. Geophys. Res. 79, 2853 (1974).ADSCrossRefGoogle Scholar
  8. Imhof, W.L., E.E. Gaines & J.B. Reagan, Evidence for the resonance precipitation of energetic electrons from the slot region of the radiation belts, J. Geophys. Res. 79, 3141 (1974).ADSCrossRefGoogle Scholar
  9. Kennel, C.F., Consequences of a magnetospheric plasma, Rev. Geophys. 7, 379 (1969).ADSCrossRefGoogle Scholar
  10. Kennel, C.F. & F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field, Phys. Fluids 9, 2377 (1966).ADSCrossRefGoogle Scholar
  11. Kennel, C.F., F.L. Scarf, R.W. Fredricks, J.H. McGehee & F.V. Coroniti, VLF electric field observations in the magnetosphere, J. Geophys. Res. 75, 6136 (1970).ADSCrossRefGoogle Scholar
  12. Lyons, L.R., Comments on pitch-angle diffusion in the radiation belts, J. Geophys. Res. 78, 6793 (1973).ADSCrossRefGoogle Scholar
  13. Lyons, L.R., General relations for particle diffusion in pitch angle and energy, J. Plasma Phys. 12, 45 (1974a).ADSCrossRefGoogle Scholar
  14. Lyons, L.R., Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys. 12, 417 (1974b).ADSCrossRefGoogle Scholar
  15. Lyons, L.R., Electron diffusion driven by magnetospheric electrostatic waves, J. Geophys. Res. 79, 575 (1974c).ADSCrossRefGoogle Scholar
  16. Lyons, L.R. & R.M. Thorne, Equilibrium structure of radiation belt electrons, J. Geophys. Res. 78, 2142 (1973).ADSCrossRefGoogle Scholar
  17. Lyons, L.R., R.M. Thorne & C.F. Kennel, Pitch angle diffusion of radiation belt electrons within the plasmasphere, J. Geophys. Res. 77, 3455 (1972).ADSCrossRefGoogle Scholar
  18. Lyons, L.R. & D.J. Williams, The quiet time structure of energetic (35–560 keV) radiation belt electrons, J. Geophys. Res. 80, 943 (1975a).ADSCrossRefGoogle Scholar
  19. Lyons, L.R. & D.J. Williams, The storm and post-storm evolution of energetic (35–560 keV) radiation belt electrons, 1975b (in press).Google Scholar
  20. Mcllwain, C.E., Auroral electron beams near the magnetic equator, Nobel Symposium Proceedings, Plenum Pub. Co. Ltd., London, 1975.Google Scholar
  21. Mizera, P.F., Observations of precipitating protons with ring current energies, J. Geophys. Res. 79, 581 (1974).ADSCrossRefGoogle Scholar
  22. Pfitzer, K., S. Kane & J.R. Winckler, The spectra and intensity of electrons in the radiation belts, Space Res. 6, 702 (1966).Google Scholar
  23. Roberts, C.S., Pitch-angle diffusion of electrons in the magnetosphere, Rev. Geophys. 7, 305 (1969).ADSCrossRefGoogle Scholar
  24. Rönmark, K., Pitch angle diffusion of ring current protons caused by electrostatic ion loss-cone waves, Planet. Space Sci. 1975 (in press).Google Scholar
  25. Thorne, R.M., E.J. Smith, R.K. Burton & R.E. Holzer, Plasmaspheric hiss, J. Geophys. Res. 78, 1581 (1973).ADSCrossRefGoogle Scholar
  26. West,H.F., Jr., R.M. Buck & J.R. Walton, Electron pitch angle distributions throughout the magnetosphere as observed on OGO-5, J. Geophys. Res. 78, 1064 (1973).ADSCrossRefGoogle Scholar
  27. Whalen, B.A. & I.B. McDiarmid, Pitch angle diffusion of low-energy auroral electrons, J. Geophys. Res. 78, 1608 (1973).ADSCrossRefGoogle Scholar
  28. Williams, D.J., T.A. Fritz & A. Konradi, Observations of proton spectra (1.0 ≤ Ep ≤ keV) and fluxes at the plasmapause, J. Geophys. Res. 78, 4751, 1973ADSCrossRefGoogle Scholar
  29. Williams, D.J., G. Hernandez & L.R. Lyons, Simultaneous observations of the proton ring current and stable auroral red arcs, Submitted to J. Geophys. Res. 1975Google Scholar
  30. Williams, D.J. & L.R. Lyons, The proton ring current and its interaction with the plasmapause: storm recovery phase, J Geophys. Res. 79, 4195 (1974a).ADSCrossRefGoogle Scholar
  31. Williams, D.J. & L.R. Lyons, Further aspects of the proton ring current interaction with the plasmapause: main and recovery phases, J. Geophys. Res. 79, 4791 (1974b).ADSCrossRefGoogle Scholar
  32. Young, T.S.T., J.D. Callen & J.E. McCune, High-frequency electrostatic waves in the magnetosphere, J. Geophys. Res. 78, 1082 (1973).ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1976

Authors and Affiliations

  • L. R. Lyons
    • 1
  1. 1.NOAABoulderUSA

Personalised recommendations