Skip to main content
  • 237 Accesses

Abstract

The first eight Solvay Conferences on Physics had dealt with the general development of quantum physics and the structure of matter. Since the creation of quantum mechanics and its application to a wide variety of phenomena, new fields of physics had been growing up. The subject of solid state physics had emerged into prominence and many fundamental problems occupied physicists working in it in different countries. The ninth and tenth Solvay Conferences were devoted to a discussion of these problems in solid state physics. The questions of crystal growth, grains and dislocations in ‘The Solid State’ were discussed at the ninth Conference. The theme of the tenth Conference was ‘The Electrons in Metals’. The electrical conductivity of metals had been discussed at the fourth Solvay Conference in 1924, but since quantum mechanics was then not available the solution of these problems lay in the future. The variety of fields and problems discussed at the ninth and tenth Solvay Conferences is evident from the following accounts of the reports presented in them.

L’État Solide, Rapports et Discussions du Neuvième Conseil de Physique tenu à l’Université libre de Bruxelles du 25 au 29 Septembre 1951, R. Stoops, Brussels, 1952.

Les Électrons dans les Métaux, Rapports et Discussions du Dixième Conseil de Physique tenu à l’Université libre de Bruxelles du 13 au 17 Septembre 1954, R. Stoops, Brussels, 1955.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. A. M. Cauchy, Mémoires de l’Académie des Sciences, 9, 114; 10, 293; 18, 153.

    Google Scholar 

  2. W. Voigt, Lehrbuch der Kristallphysik, Teubner, Berlin (1910).

    Google Scholar 

  3. M. Born, Dynamik der Krystallgitter, Teubner, Berlin (1915);

    Google Scholar 

  4. M. Born, Atomtheorie des Festen Zustandes, Teubner, Berlin, pp. 536 and 548 (1923).

    Google Scholar 

  5. J. M. Bardeen, J. Chem. Phys. 6, 367 (1938).

    Article  ADS  Google Scholar 

References

  1. J. W. Gibbs, 1878, Collected Works, p. 325 (1928).

    Google Scholar 

  2. M. Volmer, Kinetik der Phasenbildung, Dresden and Leipzig, Steinkopf (1939).

    Google Scholar 

  3. W. Kossel, Nach. Ges. Wiss. (Göttingen), p. 135 (1927).

    Google Scholar 

  4. L N. Stranski, Z. Phys. Chem. 136, 259 (1928).

    Google Scholar 

  5. R. Becker and W. Döring, Ann. Physik, 24, 719 (1935).

    Article  ADS  MATH  Google Scholar 

  6. J. Frenkel, Kinetic Theory of Liquids, Oxford, Clarendon Press ) 1946.

    MATH  Google Scholar 

  7. W. K. Burton and N. Cabrera, Disc. Faraday Soc. 5, 33, 40 (1949).

    Google Scholar 

  8. W. K. Burton, N. Cabrera and F. C. Frank, Nature, 163, 398 (1949).

    Article  ADS  Google Scholar 

  9. W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. Roy. Soc. A 243, 299 (1951).

    MathSciNet  ADS  Google Scholar 

References

  1. F. C. Frank and W. T. Read, Phys. Rev. 79, 722 (1950).

    Article  ADS  Google Scholar 

  2. N. F. Mott, Proc. Phys. Soc., B 64, 729 (1951).

    Google Scholar 

  3. W. M. Lomer, Phil. Mag. 42, 1327 (1951).

    Google Scholar 

  4. F. Röhm and A. Kochendörfer, Z. Naturforschung, 3a, 648 (1948).

    Google Scholar 

  5. E. N. da C. Andrade and C. Henderson, Phil. Trans. Roy. Soc. 244, 177 (1951).

    Article  ADS  Google Scholar 

References

  1. E. P. Wigner, Phys. Rev. 46, 1002 (1934);

    Article  ADS  MATH  Google Scholar 

  2. E. P. Wigner, Trans. Faraday Society, 34, 678 (1938).

    Article  Google Scholar 

  3. The correlation energy is defined here as the difference between the energy calculated in the Hartree-Fock approximation and that calculated by using any better approximation.

    Google Scholar 

  4. J. Bardeen, Phys. Rev. 52, 688 (1937).

    Article  ADS  Google Scholar 

  5. D. Bohm and T. Stayer, Phys. Rev. 84, 836 (1952).

    Article  ADS  Google Scholar 

References

  1. D. R. Hartree and W. Hartree, Proc. Roy. Soc. A 154, 588 (1936).

    ADS  Google Scholar 

  2. J. C. Slater. Phys. Rev. 82, 538 (1951).

    Article  ADS  Google Scholar 

  3. R. S. Mulliken, Proc. Nat. Acad. Sci. 38, 160 (1952).

    Article  ADS  MATH  Google Scholar 

References

  1. A. Matthiessen, Ann. Phys. Chemi, Poggendorff, 110, 190 (1860).

    Article  ADS  Google Scholar 

  2. R. E. Peierls, Ann. Phys. 3, 1055 (1929).

    Article  Google Scholar 

  3. P. G. Klemens, Proc. Roy. Soc. A 208, 108 (1951).

    ADS  Google Scholar 

References

  1. H. London, Proc. Roy. Soc. A 176, 522 (1940).

    ADS  Google Scholar 

  2. A. B. Pippard, Proc. Roy. Soc. A 191, 385 (1947).

    ADS  Google Scholar 

  3. R. G. Chambers, Proc. Roy. Soc. A 215, 418 (1952).

    Google Scholar 

  4. E. Fawcett, Proc. Phys. Soc. A 66, 1071 (1953).

    ADS  Google Scholar 

  5. G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. A 195, 336 (1948).

    ADS  Google Scholar 

  6. W. J. de Haas and P. M. van Alphen, Comm. Phys. Lab. Univ. Leiden, 212a (1930); 220d (1932).

    Google Scholar 

  7. R. E. Peierls, Phys. 81, 186 (1933).

    Article  MATH  Google Scholar 

  8. L. Onsager, Phil. Mag. 43, 1006 (1952).

    Google Scholar 

References

  1. W. D. Knight, Phys. Rev. 76, 1259 (1949).

    Article  MathSciNet  ADS  Google Scholar 

  2. C. H. Townes, C. Herring and W. D. Knight, Phys. Rev. 77, 852, (1950).

    Article  ADS  Google Scholar 

  3. W. Heitler and E. Teller, Proc. Roy. Soc. A 155, 637 (1936).

    ADS  Google Scholar 

  4. J. Korringa, Physica, 16, 601 (1950).

    Article  ADS  MATH  Google Scholar 

  5. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

    Article  ADS  Google Scholar 

  6. A. W. Overhauser, Phys. Rev. 92, 411 (1953).

    Article  ADS  MATH  Google Scholar 

  7. T. R. Carver and C. P. Slichter, Phys. Rev. 92, 212 (1953).

    Article  ADS  Google Scholar 

  8. A. W. Overhauser, Phys. Rev. 89, 689 (1953).

    Article  ADS  MATH  Google Scholar 

  9. R. J. Elliott, Phys. Rev. 94, 564 (1954).

    Article  ADS  Google Scholar 

  10. T. W. Griswold, Berkeley Thesis (1953).

    Google Scholar 

  11. F. J. Dyson, Phys. Rev. 98, 349 (1955).

    Article  ADS  MATH  Google Scholar 

References

  1. W. Hume-Rothery, The Metallic State (Oxford 1931 ).

    Google Scholar 

  2. N. F. Mott and H. Jones, Metals and Alloys (Oxford 1936 ).

    Google Scholar 

  3. K. Huang, Proc. Phys. Soc. 60, 161 (1948).

    Article  ADS  Google Scholar 

References

  1. H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1943);

    Article  ADS  Google Scholar 

  2. H. B. Huntington and F. Seitz, Phys. Rev. 76, 1728 (1949);

    Article  ADS  Google Scholar 

  3. H. B. Huntington, Phys. Rev. 91, 1092 (1953).

    Article  ADS  Google Scholar 

  4. J. Friedel, Phil. Mag. 43, 153 (1952), Equation (2).

    Google Scholar 

References

  1. J. Becquerel, J. Physique, 10, 10 (1939).

    MATH  Google Scholar 

  2. L. Landau, Sow. Phys. 4, 675 (1933).

    MATH  Google Scholar 

  3. C. Starr, Phys. Rev. 58, 984 (1940).

    Article  ADS  MATH  Google Scholar 

  4. T. Nagamiya, Prog. Theor. Phys. 6, 342 (1951);

    Article  ADS  Google Scholar 

  5. K. Yoshida, Prog. Theor. Phys. 6, 691 (1951).

    Article  ADS  Google Scholar 

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H. Fröhlich, Phys. Rev. 79, 845 (1950).

    Article  ADS  MATH  Google Scholar 

  3. F. Bloch, Z. Phys. 52, 555 (1928).

    ADS  Google Scholar 

  4. J. Bardeen, Rev. Mod. Phys. 23, 261 (1951);

    Article  ADS  MATH  Google Scholar 

  5. H. Fröhlich, Physica 19, 755 (1953).

    Article  ADS  MATH  Google Scholar 

  6. M. Buckingham and R. Schafroth, Proc. Phys. Soc. A 67, 828 (1954).

    ADS  Google Scholar 

  7. H. Fröhlich, Proc. Roy. Soc. A 223, 296 (1954).

    Google Scholar 

  8. H. Fröhlich, Advances in Chemical Physics (1954).

    Google Scholar 

  9. B. Matthias, Phys. Rev. 92, 874 (1953).

    Article  ADS  Google Scholar 

References

  1. J. P. Jan and H. M. Gijsman, Physica, 5, 277 (1952).

    Google Scholar 

  2. J. Smit and J. Volger, Phys. Rev. 92, 1576 (1953).

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Mehra, J. (1975). Solid State Physics. In: The Solvay Conferences on Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1867-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1867-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1869-2

  • Online ISBN: 978-94-010-1867-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics