Skip to main content

Ligand Substitution Processes. An NMR Study. I. Solvation Shells of Diamagnetic Cations Al3+ and Be2+

  • Conference paper
Chemical and Biological Applications of Relaxation Spectrometry

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 18))

  • 233 Accesses

Abstract

Nuclear magnetic resonance may be used as a relaxation method to study chemical reactions at equilibrium. Continuous wave nmr is a powerful tool to study the first solvation shell of diamagnetic cations for which the exchange of ligands between bound and free solvent molecules fit the nmr time scale. This ligand exchange is studied using not only 1H resonances, but also 31Р and 27Al spectra. An associative mechanism is found for the tetrahedral solvate A1(HMPA) 3+4 and dissociative processes for octahedral A1A 3+6 and tetrahedral Be 2+4 solvates (in nitromethane), where A is an organophosphorus solvent (trialkyl phosphates and phosphonates).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, sec: (a) J.F. Hinton and S. Amis, Chem. Rev. 67, 367 (1967);

    Article  CAS  Google Scholar 

  2. C. Deverell, “Progress in Nuclear Magnetic Resonance Spectroscopy”, (J.W. Emsley, J. Feeney, and L.H. Sutcliffe, Eds.), Vol.4,p.235, Pergamon Press, New York, 1969;

    Google Scholar 

  3. K. Kustin and J. Swinehart, “Inorganic Reaction Mechanism” (J.O. Edwards, Ed.) Part 1, p.107, Wiley-Interscience, New York 1970,

    Google Scholar 

  4. J.J. Delpuech, A. Peguy and M.R. Khaddar, J. Electroanal. Chem. 29, 31 (1971);

    Article  CAS  Google Scholar 

  5. J.F. Hinton and S. Amis, Chem. Rev. 71, 627 (1971);

    Article  CAS  Google Scholar 

  6. M. Szwarc, “Ions and Ion Pairs in Organic Reactions”, p.311, Wiley-Interscience, New York, 1972;

    Google Scholar 

  7. A. Fratiello, “Inorganic Reaction Mechanisms” (J.O. Edwards, Ed.) Part 2, p.57, Wiley-Interscience, New York, 1972;

    Google Scholar 

  8. J.W. Akitt, “Annual Reports on nmr Spectroscopy” (E.F. Mooney, Ed.), Vol. 5A, p.465, Academic Press London, 1972.

    Google Scholar 

  9. J.A. Pople, W.G. Schneider and H.J. Bernstein, “High-resolution nuclear magnetic resonance”, 1959, McGraw-Hill, New York.

    Google Scholar 

  10. A. Loewenstein and T.M. Connor, Ber. der Bunsen Gesell. fur Phys. Chem., 67, 280 (1963).

    CAS  Google Scholar 

  11. J.J. Delpuech, Bull. Soc. Chim. France, 1964, p.2697.

    Google Scholar 

  12. C.S. Johnson, “Advances in Magnetic Resonances”, Vol.1, Academic Press, New York, 1963, p.33–102.

    Google Scholar 

  13. H.S. Gutowsky, D.W. McCall and C.P. Slichter, J. Chem. Phys., 21, 279 (1953);

    Article  CAS  Google Scholar 

  14. H.S. Gutowsky and A. Saika, Ibid., 21 1688 (1953);

    Article  CAS  Google Scholar 

  15. H.S. Gutowsky and C.H. Holm, Ibid, 25, 1228 (1956).

    Article  CAS  Google Scholar 

  16. H.M. McConnell, J. Chem. Phys., 28, 430 (1958).

    Article  CAS  Google Scholar 

  17. P.W. Anderson, J. Phys. Soc. Japan, 9, 316 (1954).

    Article  Google Scholar 

  18. R. Kubo and K. Tomita, Ibid., 9, 88 (1954);

    Article  Google Scholar 

  19. R. Kubo, Ibid., 9, 935 (1954).

    Article  CAS  Google Scholar 

  20. R.A. Sack, Mol. Phys. 1, 163 (1958).

    Article  CAS  Google Scholar 

  21. (a) R.E. Connick and D. Fiat, J. Chem. Phys., 39, 1349 (1963);

    Article  CAS  Google Scholar 

  22. M. Alei, Jr. and J.A. Jackson, J. Chem. Phys., 41, 3402 (1964);

    Article  CAS  Google Scholar 

  23. R. Schuster and A. Fratiello, J. Chem. Phys., 47, 1554 (1967);

    Article  CAS  Google Scholar 

  24. S. Thomas and W. L. Reynolds., J. Chem.Phys., 44, 3148 (1966);

    Article  CAS  Google Scholar 

  25. W. G. Movius and N.A. Matwiyoff, Inorg. Chem., 6, 847 (1967);

    Article  CAS  Google Scholar 

  26. L. Supran and N. Sheppard, Chem. Commun., 832 (1967);

    Google Scholar 

  27. J.F. Hon, Mol. Phys., 15, 57 (1968);

    Article  CAS  Google Scholar 

  28. J.F. O’Brien and M. Alei Jr., J. Phys. Chem., 74, 743 (1970).

    Article  Google Scholar 

  29. (a) D. Fiat and R.E. Connick, J. Amer. Chem. Soc., 88, 4754 (1966);

    Article  CAS  Google Scholar 

  30. T.J. Swift, O.G. Fritz and T.A. Stephenson, J. Chem. Phys., 46, 406 (1967);

    Article  CAS  Google Scholar 

  31. M. Alei Jr. and J.A. Jackson, J.Chem. Phys., 41, 41, 3402 (1964).

    Article  CAS  Google Scholar 

  32. (a) T.H. Cannon and R.E. Richards, Trans. Faraday Soc, 62, 1378 (1966);

    Article  CAS  Google Scholar 

  33. R.E. Schuster and A. Fratiello, J. Chem. Phys. 47, 1554 (1967);

    Article  CAS  Google Scholar 

  34. A. Fratiello, R.E. Lee, V.M. Nishida, and R.E. Schuster, Ibid., 48, 3705 (1968);

    Article  Google Scholar 

  35. J. Crea and S.F. Lincoln, Inorgan. Chem. 11, 1131 (1972),

    Article  CAS  Google Scholar 

  36. H. Haraguchi; K. Fuwa, and S. Fujiwara, J. Phys. Chem., 77. 1497 (1973).

    Article  CAS  Google Scholar 

  37. Ref. 11a; 11b and 12d.

    Google Scholar 

  38. S.A. Al-Baldawi and T.E. Gough, Canad. J. Chem., 47, 1417 (1969);

    Article  CAS  Google Scholar 

  39. S.A. Al-Baldawi, M.H. Brooker, T.E. Gough and D.E. Irish, Ibid., 48, 1202 (1970).

    Article  CAS  Google Scholar 

  40. J.H. Swinehart and H. Taube, J. Chem. Phys., 37,. 1579 (1962);

    Article  CAS  Google Scholar 

  41. S. Nakamura and S. Meiboom, J. Amer. Chem. Soc, 89, 1765 (1967);

    Article  CAS  Google Scholar 

  42. N.A. Matwiyoff and H. Taube, Ibid. 90, 2796 (1968);

    Article  CAS  Google Scholar 

  43. T. Alger, Ibid., 91, 2220 (1970).

    Article  Google Scholar 

  44. C. Beguin, J.J. Delpuech, and A. Peguy, Mol. Phys., 17, 317 (1969).

    Article  CAS  Google Scholar 

  45. J.J. Delpuech, A. Peguy, and M.R. Khaddar, J. Electroanal. Chem., 29, 31 (1971).

    Article  CAS  Google Scholar 

  46. J.J. Delpuech, A. Peguy, and M.R. Khaddar, J. Magn. Resonance 6, 325 (1972).

    CAS  Google Scholar 

  47. J.C. Boubel, J.J. Delpuech, M.R. Khaddar, and A. Peguy, Chem. Commun., 1263 (1971).

    Google Scholar 

  48. D. Canet, J.J. Delpuech, M.R. Khaddar, and P. Rubini, J. Magn. Resonance, 15. 325 (1974).

    CAS  Google Scholar 

  49. D. Canet, J.J. Delpuech, M.R. Khaddar, and P. Rubini, J. Magn. Resonance, 9., 329 (1973).

    CAS  Google Scholar 

  50. J.J. Delpuech, M.R. Khadar, A. Peguy, and P. Rubini, Chem. Commun., 154 (1974).

    Google Scholar 

  51. J.J. Delpuech, M.R. Khaddar, A. Peguy, and P. Rubini, in the press.

    Google Scholar 

  52. C.H. Langford and H.B. Gray, “Ligand substitution Processes”, Benjamin, New York, 1966.

    Google Scholar 

  53. F. Basolo and R.G. Pearson, “Mechanisms of Inorganic Reactions” Wiley, New York, 1958.

    Google Scholar 

  54. J. Crea and S.F. Lincoln, J.C.S. Dalton, 2075 (1973).

    Google Scholar 

  55. D. Fiat and R.E. Connick, J. Amer. Chem. Soc., 90, 608 (1968).

    Article  CAS  Google Scholar 

  56. W.G. Movius and N.A. Matwiyoff, Inorg. Chem., 8, 925 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Delpuech, J.J., Khaddar, M.R., Peguy, A.A., Rubini, P.R. (1975). Ligand Substitution Processes. An NMR Study. I. Solvation Shells of Diamagnetic Cations Al3+ and Be2+ . In: Wyn-Jones, E. (eds) Chemical and Biological Applications of Relaxation Spectrometry. NATO Advanced Study Institutes Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1855-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1855-5_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1857-9

  • Online ISBN: 978-94-010-1855-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics