Advertisement

Structural Properties and Statistics of Finite Mixtures

  • Javad Behboodian
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

Summary

Some general properties of mixtures of distributions which are useful in theory and practice are surveyed. The structural properties of finite mixtures are explained, and some useful statistics are introduced. The statistical works regarding mixing distributions and the parameters of finite mixtures are mentioned.

Key Words

General mixtures finite mixtures location mixtures scale mixtures identifiability estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Behboodian, J. (1970). Technometries 12, 131–139.zbMATHCrossRefGoogle Scholar
  2. [2]
    Behboodian, J. (1972). Technometries 14, 919–923.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Behboodian, J. (1972). J. Statist. Comput. Simul. 295–314.Google Scholar
  4. [4]
    Behboodian, J. (1972). Sankhyã Ser B 34, 15–20.MathSciNetGoogle Scholar
  5. [5]
    Boes, D. C. (1966). Ann. Math. Statist. 37, 177–187.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Boes, D. C. (1967). Sankhyã Ser A 29, 417–420.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Choi, K. and Bulgren, W. G. (1968). J. Roy. Statist. Soc. 30, 444–460.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Day, N. E. (1969). Biometrika 56, 463–474.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Deely, J. J. and Kruse, R. L. (1968). Ann. Math. Statist. 39, 286–288.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. LI ( 2nd ed. ). John Wiley and Sons, Inc., New York.zbMATHGoogle Scholar
  11. [11]
    Hill, B. M. (1963). J. Araer. Statist. Assoc. 58, 918–932.CrossRefGoogle Scholar
  12. [12]
    Ifram, A. F. (1970). J. Amer. Statist. Assoc. 65, 749–753.zbMATHCrossRefGoogle Scholar
  13. [13]
    Keilson, J. and Steutel, F. W. (1974). Ann. Prob. 2, 112–129.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Lutful Kabir, A. B. M. (1968). J. R. Statist. Soc. B 30, 472–482.Google Scholar
  15. [15]
    Patii, G. P. (1965). Sankhyã Ser A 27, 259–270.Google Scholar
  16. [16]
    Patii, G. P. (1967). Sankhyã Ser B 30, 355–366.Google Scholar
  17. [17]
    Patii, G. P. and Bildikar, S. (1966). Proc. Camb. Philos. Soc. 62, 484–494.Google Scholar
  18. [18]
    Pearson, K. (1894). Phill. Trans. Roy. Soc. A 185, 71–110.CrossRefGoogle Scholar
  19. [19]
    Robbins, H. (1948). Ann. Math. Statist. 19, 360–367.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Robbins, H. and Pitman, E. J. G. (1949). Ann. Math. Statist. 20, 552–560.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Robbins, H. (1964). Ann. Math. Statist. 35, 1–20.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Robertson, C. A. and Fryer, J. G. (1970). Biometrika 57, 57–65.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Rolph, J. E. (1968). Ann. Math. Statist. 39, 1289–1302.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Scheaffer, R. L. (1974). Biometrics 30, 187–198.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Teicher, H. (1960). Ann. Math. Statist. 31, 55–73.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Teicher, H. (1961). Ann. Math. Statist. 32, 244–248.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Teicher, H. (1961). Ann. Math. Statist. 34, 1265–1269.MathSciNetCrossRefGoogle Scholar
  28. [28]
    Yakowitz, S. and Spragins, J. (1968). Ann. Math. Statist. 39, 209–214.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Yakowitz, S. (1969). Ann. Math. Statist. 40, 1728–1735.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • Javad Behboodian
    • 1
  1. 1.Pahlavi UniversityShirazIran

Personalised recommendations