Stable Distributions: Probability, Inference, and Applications in Finance—A Survey, and a Review of Recent Results

  • S. J. Press
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)


This paper provides an overview of the stable probability laws. The probability theory underlying this class is reviewed from both a univariate and multivariate standpoint. Known results on estimating parameters of the laws are summarized and some new Monte Carlo results involving estimation by using sample characteristic functions is reported. The growing controversy regarding the application of these laws in the field of Finance is examined in terms of the most recent evidence.

Key Words

Stable distributions multivariate stable laws applications in finance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bachelier, L. (1900). Theorie de la Speculation. Gauthier-Villars, Paris.Google Scholar
  2. [2]
    Bartels, Robert H. (1972). Stable Distributions in Economics The University of Sydney, Sydney, Australia.Google Scholar
  3. [3]
    Bergström, H. (1952). Arkiv. for Matematik II, 375–378.CrossRefGoogle Scholar
  4. [4]
    Blattberg, R. C. and N. J. Gonedes (1974). J. Bus. 47, 244–280.CrossRefGoogle Scholar
  5. [5]
    Du Mouchel, William H. (1971). Stable Distributions in Statistical Inference. Dissertation, Yale University, New Haven, Conn.Google Scholar
  6. [6]
    Du Mouchel, William H. (1973). Ann. Statist. 1, 948–957.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Fama, E. (1965). J. Bus. 38, 34–105.CrossRefGoogle Scholar
  8. [8]
    Fama, E. (1965). Manag. Sci. 2, 404–419.CrossRefGoogle Scholar
  9. [9]
    Fama, E. and Roll, R. (1968). J. Amer. Statist. Assoc. 63, 817–836.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Fama, E. and Roll, R. (1971). J. Amer. Statist. Assoc. 66, 331–338.zbMATHCrossRefGoogle Scholar
  11. [11]
    Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Vol. 2. John Wiley and Sons, Inc., New York.zbMATHGoogle Scholar
  12. [12]
    Fieletz, B. D. and E. W. Smith (1972). J. Amer. Statist. Assoc. 67, 813–814CrossRefGoogle Scholar
  13. [13]
    Gnedenko, B. V. (1939). Bull. Soc. Math. France 52, 49–85.Google Scholar
  14. [14]
    Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley Publishing Co., Cambridge, Mass.zbMATHGoogle Scholar
  15. [15]
    Holt, D. R. and E. L. Crow. (1973). J. Res., Nat. Bur. of Stand. 77B, 143–198.MathSciNetGoogle Scholar
  16. [16]
    Hsu, D. A., Miller, R. B., and Wichern, D. W. (1974). J. Amer. Statist. Assoc. 69, 108–113.zbMATHCrossRefGoogle Scholar
  17. [17]
    Ibragimov, I. A. and Chernin, K. E. (1959). SIAM Soc. J. 4, 417–419.zbMATHGoogle Scholar
  18. [18]
    Kleinman, D. (1965). Estimating the Parameters of Stable Probability Laws. Unpublished manuscript, University of Chicago, Graduate School of Business.Google Scholar
  19. [19]
    Lévy, P. (1924). Bull. Soc. Math. France 52, 49–85.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Lévy, P. (1937). Theorie de l’Addition des Variables Aleatoires, 2nd ed. Gauthier-Villars, Paris.Google Scholar
  21. [21]
    Mandelbrot, B. (1963). J. Bus. 36, 349–419.CrossRefGoogle Scholar
  22. [22]
    Officer, R. R. (1972). J. Amer. Statist. Assoc. 67, 807–812.CrossRefGoogle Scholar
  23. [23]
    Paulson, A. S., Holcomb, E. W., and Leitch, R. A. (1974). The estimation of the parameters of the stable laws. Technical Report, Rensselaer Polytechnic Institute, Troy, N.Y.Google Scholar
  24. [24]
    Praetz, P. D. (1972). J. Bus. 45, 49–55.CrossRefGoogle Scholar
  25. [25]
    Press, S. James. (1964). D-13075-PR, The Rand Corporation, Santa Monica, California.Google Scholar
  26. [26]
    Press, S. James. (1967). J. Bus. 40, 317–335.CrossRefGoogle Scholar
  27. [27]
    Press, S. James. (1968). J. Amer. Statist. Assoc. 63, 607–613.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Press, S. James. (1970). A compound Poisson process model for multiple security analysis. In Random Counts in Scientific Work, Vol. 3, edited by G. P. Patil. Penn State University Press, University Park, Pa.Google Scholar
  29. [29]
    Press, S. James. (1972). Applied Multivariate Analysis. John Wiley and Sons, Inc., New York.zbMATHGoogle Scholar
  30. [30]
    Press, S. James. (1972). J. Multivariate Anal. 2, 444–462.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    Press, S. James. (1972). J. Amer. Statist. Assoc. 67.Google Scholar
  32. [32]
    Press, S. James. (1972). Report No. 7227, Center for Math. Studies in Business and Economics, University of Chicago.Google Scholar
  33. [33]
    Rvačeva, E. L. (1962). Sci. Trans. Math. Statist, and Prob. 183–205. Translated by S. G. Ghurye from L’vov. Gos. Univ. Uc. Zap. Ser. Meh-Mat. 29, 5–44.Google Scholar
  34. [34]
    Samuelson, P. (1967). Efficient Portfolio Selection for Pareto-Levy Investments. J. Fin. Quant. Anal., 2, 107–122.CrossRefGoogle Scholar
  35. [35]
    Teichmoeller, J. (1971). J. Amer. Statist. Assoc. 66, 282–284.CrossRefGoogle Scholar
  36. [36]
    Ziemba, W. T. (1974). Mathematical Programming: Theory and Practice, P. L. Hamer and G. Zoutendijk (Eds.). North- Holland Publishing Co., 328–370.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • S. J. Press
    • 1
    • 2
  1. 1.University of ChicagoChicagoUSA
  2. 2.University of British ColumbiaVancouverCanada

Personalised recommendations