Advertisement

Estimation of Parameters on Some Extensions of the Katz Family of Discrete Distributions Involving Hypergeometric Functions

  • John Gurland
  • Ram Tripathi
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

Summary

A two-parameter family of discrete distributions developed by Katz (1963) is extended to three- and four-parameter families whose probability generating functions involve hypergeometric functions. This extension contains other distributions appearing in the literature as particular cases. Various methods of estimating the parameters are investigated and their asymptotic efficiency relative to maximum likelihood estimators compared.

Key Words

Discrete distributions hypergeometric functions estimation efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barankin, E. W. and Gurland, J. (1951). Univ. Calif. Pub. Statist. 1, 89–129.MathSciNetGoogle Scholar
  2. [2]
    Crow, E. L. and Bardwell, G. E. (1963). Estimation of the parameters of the hyper-Poisson distributions in Classical and Contagious Discrete Distributions, G. P. Patil (ed.), Pergamon Press, New York, 127–140.Google Scholar
  3. [3]
    Dacey, M. F. (1972). Sankhyã Ser. B 34, 243–250.MathSciNetGoogle Scholar
  4. [4]
    Good, I. J. (1953). Biometrika 40, 237–264.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Hinz, P. and Gurland, J. (1970). J. Amer. Stat. Assoc. 65, 887–903.zbMATHCrossRefGoogle Scholar
  6. [6]
    Irwin, J. O. (1963). Inverse factorial series as frequency distributions in Classical and Contagious Discrete Distributions, G. P. Patil (ed.), Pergamon Press, New York, 159–174.Google Scholar
  7. [7]
    Katz, L. (1963). Unified treatment of a broad class of discrete probability distributions in Classical and Contagious Discrete Distributions, G. P. Patil (ed.), Pergamon Press, New York, 175–182.Google Scholar
  8. [8]
    Kemp, A. W. (1968). Sankhyã Ser. A 30, 401–410.MathSciNetzbMATHGoogle Scholar
  9. [9]
    McGuire, J. V., Brindley, T. A. and Bancroft, T. A. (1957). Biometrics 13, 65–78.CrossRefGoogle Scholar
  10. [10]
    Neyman, J. (1939). Ann. Math. Stat. 10, 35–57.zbMATHCrossRefGoogle Scholar
  11. [11]
    Ord, J. K. (1967). Biometrika, 54, 649–656.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Simon (1954). Biometrika, 42, 425–440.Google Scholar
  13. [13]
    “Student” (1970). Biometrika 5, 351–360.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • John Gurland
    • 1
  • Ram Tripathi
    • 1
  1. 1.Department of StatisticsUniversity of WisconsinMadisonUSA

Personalised recommendations