Advertisement

On the Probabilistic Structure and Properties of Discrete Lagrangian Distributions

  • P. C. Consul
  • L. R. Shenton
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

Summary

Lagrange distributions have their origin in the Lagrange expansion for the root of an equation. The basic formula is discussed, and its relation to convolution probability functions. General formulae are given for cumulants and non-central moments. Lastly, a Lagrange-type distribution is shown to hold for a certain queueing process.

Key Words

Lagrange distribution Lagrange expansion moments cumulants queueing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Faà de Bruno. (1855). Quart. J. Math. 1, 359–360.Google Scholar
  2. [2]
    Consul, P. C. and Jain, G. C. (1972). Technometrics 15 659–669.MathSciNetGoogle Scholar
  3. [3]
    Consul, P. C. and Jain, G. C. (1973). On some interesting properties of the generalized Poisson distribution. Biometrische Zeitschrift.Google Scholar
  4. [4]
    Consul, P. C. and Shenton, L. R. (1971). SIAM J. Appl. Math. 23, 239–248.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Consul, P. C. and Shenton, L. R. (1973). Comm. in Statist. 2, 263–272.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Haight, F. A. (1961). Biometrika 48, 167–173.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Kendall, M. G. and Stuart, A. (1963). The Advanced Theory of Statistics, Vol. 1. Charles Griffin and Company, Ltd., London.Google Scholar
  8. [8]
    Jain, G. C. and Consul, P. C. (1971). SIAM J. Appl. Math. 21, 501–513.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Patil, G. P. (ed.) (1970). Random Counts in Scientific Work, Vol. 1. ( Random Counts in Models and Structures.) The Pennsylvania State University Press, University Park and London.zbMATHGoogle Scholar
  10. [10]
    Prabhu, N. U. (1965). Queues and Inventories. John Wiley, New York.zbMATHGoogle Scholar
  11. [11]
    Tanner, J. C. (1961). Biometrika 48, 222–224.MathSciNetzbMATHGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • P. C. Consul
    • 1
    • 2
  • L. R. Shenton
    • 1
    • 2
  1. 1.University of CalgaryCanada
  2. 2.University of GeorgiaAthensUSA

Personalised recommendations