Advertisement

Models for Gaussian Hypergeometric Distributions

  • Adrienne W. Kemp
  • C. D. Kemp
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

Summary

The four distributions discussed here belong to two partially overlapping classes. The class (es) to which each belongs is found to determine the kinds of models giving rise to it. Urn, contagion, stochastic and STER process models are considered together with conditionally, weighting and mixing models.

Key Words

Hypergeometric distributions urn models contagion stochastic processes STER distributions conditionality weighted distributions mixed distributions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bissinger, B. H. (1965). In Classical and Contagious Discrete Distributions, G. P. Patil (ed.). Statistical Publishing Society, Calcutta and Pergamon, New York, 15–17.Google Scholar
  2. [2]
    Bliss, C. I. and Fisher, R. A. (1953). Biometrics 9 176–200.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Bosch, A. J. (1963). Statistica Neerlandica 17, 201–213.CrossRefGoogle Scholar
  4. [4]
    Boswell, M. T. and Patil, B. P. (1970). In Random Counts in Scientific Work, Vol. 1, Random Counts in Models and Structures, G. P. Patil (ed.). Penn State University Press, University Park, Pa., 3–22.Google Scholar
  5. [5]
    Boswell, M. T. and Patil, G. P. (1971). In Statistical Ecology, Vol. 1, Spatial Patterns and Statistical Distributions, Patil, Pielou and Waters (eds.). Penn State University Press, University Park, Pa., 99–130.Google Scholar
  6. [6]
    Boswell, M. T. and Patil, G. P. (1972). In Stochastic Point Processes, P. A. W. Lewis (ed.). Wiley, New York, 285–298.Google Scholar
  7. [7]
    Dacey, M. F. (1969). Geog. Anal. 1., 283–317.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Feller, W. (1957). An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. Wiley, New York.zbMATHGoogle Scholar
  9. [9]
    Fréchet, M. (1939). Les probabilités associées à un système d’événements compatibles et dépendants. 1. Evénements en nombre fini fixe. Actualités Sci. Indust. No. 859. Hermann, Paris.Google Scholar
  10. [10]
    Fréchet, M. (1943). Les probabilités associées à un système d’événements compatibles et dépendants. 2. Cas particuliers et applications. Actualités Sci. Indust. No. 942. Hermann, Paris.zbMATHGoogle Scholar
  11. [11]
    Gurland, J. (1958). Biometrics 14, 229–249.zbMATHCrossRefGoogle Scholar
  12. [12]
    Irwin, J. O. (1953). J. Roy. Statist. Soc. B 15, 87–89.zbMATHGoogle Scholar
  13. [13]
    Irwin, J. O. (1954). Biometrika 41, 266–268.MathSciNetGoogle Scholar
  14. [14]
    Irwin, J. O. (1968). J. Roy. Statist. Soc. A 131, 205–225.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Kemp, A. W. (1968). Sankhyã A 30, 401–410.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Kemp, C. D. (1973). Accid. Anal. Prev. 5, 371–373.CrossRefGoogle Scholar
  17. [17]
    Kemp, A. W. and Kemp, C. D. (1971). Zastos. Mat. 12, 167–173.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Kemp, C. D. and Kemp, A. W. (1956). J. Roy. Statist. Soc. B 18, 202–211.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Kemp, C. D. and Kemp, A. W. (1969). Bull. I.S. I. 43, 336–338.Google Scholar
  20. [20]
    Patil, G. P. and Joshi, S. W. (1968). A Dictionary and Bibliography of Discrete Distributions. Oliver and Boyd, Edinburgh and Hafner, New York.zbMATHGoogle Scholar
  21. [21]
    Patil, G. P. and Stiteler, W. M. (19 72). Bull. I.S.I. 44, 55–81.Google Scholar
  22. [22]
    Patil, G. P. and Stiteler, W. M. (1974). Res. Popul. Ecol. 15, 238–254.CrossRefGoogle Scholar
  23. [23]
    Rao, C. R. (1965). In Classical and Contagious Discrete Distributions, G. P. Patil (ed.). Statistical Publishing Society, Calcutta and Pergamon, New York, 320–332.Google Scholar
  24. [24]
    Sarkadi, K. (1957). Magyar Tud. Akad. Mat. Kutató Int. Közl. 2, 59–69.MathSciNetGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • Adrienne W. Kemp
    • 1
  • C. D. Kemp
    • 1
  1. 1.University of BradfordBradfordEngland

Personalised recommendations