Advertisement

Bivariate and Multivariate Extreme Distributions

  • J. Tiago de Oliveira
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

Summary

The paper discusses some characteristic properties of bivariate and multivariate extreme distributions.

Key Words

Bivariate extreme distributions stability postulate Gumbel marginals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dodd, E. L. (1923). The greatest and the least variate under general laws of error. Trans. Amer. Math. Soc. 25.Google Scholar
  2. [2]
    Feller, W. (1960). An Introduction to Probability Theory and Its Applications, II. John Wiley and Sons, Inc., New York.Google Scholar
  3. [3]
    Finkelshteyn, B. V. (1953). Limiting distributions of extreme values of the variational series of two dimensional random variable. Dokl. Ak. Nauk. SSSR 91, 2.Google Scholar
  4. [4]
    Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of frequency distributions of the largest and smallest member of a sample. Proc. Camb. Phil. Soc. 24, part 2.Google Scholar
  5. [5]
    Fréchet, M. (1927). Sur la loi de probabilité de l’cart maximum. Ann. Soc. Polon. Math. (Krakov) 6.Google Scholar
  6. [6]
    Fréchet, M. (1940). Les probabilities associées a un système d’evenements compatibles et dependents. Act. Sc. et Ind. 859, Paris.Google Scholar
  7. [7]
    Fréchet, M. (1951). Sur les tableaux de correlation dont les marges sont données. Ann. Univ. Lyon, ser. III, X IV A, Math. & Astr.Google Scholar
  8. [8]
    Geffroy, J. (1958/1959). Contribution a la théorie des valeurs extrêmes. Publ. Inst. Statist. Univ. Paris, 718.Google Scholar
  9. [9]
    Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann, Math. 44.Google Scholar
  10. [10]
    Gumbel, E. J. (1935). Les valeurs extremes des distributions statistiques. Ann. Inst. Henri Poincaré, V.Google Scholar
  11. [11]
    von Mises, R. (1936). La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalkanique, I.Google Scholar
  12. [12]
    Sibuya, M. (1960). Bivariate extremal statistics. Ann. Inst. Statist. Math. 11.Google Scholar
  13. [13]
    Tiago de Oliveira, J. (1958). Extremal distributions. Rev. Fac. Cienc. Univ. Lisboa, 2 ser., A, Mat.Google Scholar
  14. [14]
    Tiago de Oliveira, J. (1962/1963). Structure theory of bivariate extremes, extensions. Est. Mat. Estat e Econom. 7.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • J. Tiago de Oliveira
    • 1
  1. 1.Faculty of SciencesCenter of Applied MathematicsLisbonPortugal

Personalised recommendations