# The Bivariate Burr Distribution

• Frederick C. Durling
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

## Summary

The bivariate Burr distribution,
$${\text{F(x,y)}}\,{\text{ = }}\,{\text{1}}\, - \,{(1 + {{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}})^{ - {\text{p}}}}\, - \,{(1 + {{\text{y}}^{^{_{^{\text{b}}2}}}})^{ - {\text{p}}}}\, + \,{(1 + {{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}} + {{\text{y}}^{^{_{^{\text{b}}2}}}} + {\text{r}}{{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}}{{\text{y}}^{^{_{^{\text{b}}2}}}})^{ - {\text{p}}}};\,{\text{x,}}\,{\text{y}}\,\underline \geqslant \,0,\,0\,\underline \leqslant \,{\text{r}}\,\underline \leqslant \,{\text{p}}\, + \,1;\,{\text{F(x,y)}}\,{\text{ = }}\,{\text{0}}\,{\text{elsewhere}}$$
is developed and investigated. Two special cases of the distribution occur when the parameter r = 0 and 1 respectively. For the limiting case r = 0, F(x,y) reduces to the bivariate case of the multivariate Burr distribution developed by Takahasi (1965). When r = 1, F(x,y) = F(x)·F(y), the independent case. The relationship of the bivariate Burr distribution and its marginals to the Pearson curves is discussed.

## Keywords

Burr distribution general system of distributions Pearson system of frequency curves bivariate Burr distribution

## References

1. [1]
Bryson, M. C. (1974). Technometrics 16, 61–68.
2. [2]
Burr, I. W. (1942). Ann. of Math. Statist. 13, 215–232.
3. [3]
Burr, I. W. (1967a). Industrial Quality Control 23, 563–569.Google Scholar
4. [4]
Burr, I. W. (1967b). Technometrics 9, 647–651.
5. [5]
Burr, I. W. (1973). Comm. Statist. 2., 1–21.Google Scholar
6. [6]
Burr, I. W. and Cisiak, P. J. (1968). J. Amer. Statist. Assoc. 63, 627–643.
7. [7]
Craig, C. C. (1936). Ann. Math. Statist. 7, 16–28.
8. [8]
Durling, F. C. (1969). Bivariate Probit, Logit and Burrit Analysis. Themis Signal Analysis Statistics Research Pro-gram, Tech. Rept. 41Google Scholar
9. [9]
Durling, F. C., Owen, D. B., and Drane, J. W. (1970). Ann. Math. Statist. 41, 1135.Google Scholar
10. [10]
Gradshteyn, I. S. and Ryshik, I. M. (1965). Table of Integrals, Series and Products. Academic Press, New York and London.Google Scholar
11. [11]
Hatke, Sister M. A. (1949). Ann. Math. Statist. 20, 461–463.
12. [12]
Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. John Wiley and Sons, Inc., New York and London.
13. [13]
Pearson, E. S. and Hartley, H. O. (1966). Biometrika Tables for Statisticians, Vol. I, 3rd ed. Cambridge University Press, Cambridge.
14. [14]
Seibert, G. B., Jr. (1970). Estimation and Confidence Intervals for Quantal Response or Sensitivity Data. Themis Signal Analysis Statistics Research Program, Tech. Rept. 66, Department of Statistics, Southern Methodist University, Dallas.Google Scholar
15. Takahasi, K . (1965). Ann. Inst. Statist. Math. (Tokyo) 17, 257–260.
16. [16]
Wheeler, D. J. (1970). An Alternative to an F-Test on Variances. Themis Signal Analysis Statistics Research Program, Tech. Rept. 76, Department of Statistics, Southern Methodist University, DallasGoogle Scholar