The Bivariate Burr Distribution

  • Frederick C. Durling
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)


The bivariate Burr distribution,
$${\text{F(x,y)}}\,{\text{ = }}\,{\text{1}}\, - \,{(1 + {{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}})^{ - {\text{p}}}}\, - \,{(1 + {{\text{y}}^{^{_{^{\text{b}}2}}}})^{ - {\text{p}}}}\, + \,{(1 + {{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}} + {{\text{y}}^{^{_{^{\text{b}}2}}}} + {\text{r}}{{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}}{{\text{y}}^{^{_{^{\text{b}}2}}}})^{ - {\text{p}}}};\,{\text{x,}}\,{\text{y}}\,\underline \geqslant \,0,\,0\,\underline \leqslant \,{\text{r}}\,\underline \leqslant \,{\text{p}}\, + \,1;\,{\text{F(x,y)}}\,{\text{ = }}\,{\text{0}}\,{\text{elsewhere}}$$
is developed and investigated. Two special cases of the distribution occur when the parameter r = 0 and 1 respectively. For the limiting case r = 0, F(x,y) reduces to the bivariate case of the multivariate Burr distribution developed by Takahasi (1965). When r = 1, F(x,y) = F(x)·F(y), the independent case. The relationship of the bivariate Burr distribution and its marginals to the Pearson curves is discussed.


Burr distribution general system of distributions Pearson system of frequency curves bivariate Burr distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bryson, M. C. (1974). Technometrics 16, 61–68.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Burr, I. W. (1942). Ann. of Math. Statist. 13, 215–232.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Burr, I. W. (1967a). Industrial Quality Control 23, 563–569.Google Scholar
  4. [4]
    Burr, I. W. (1967b). Technometrics 9, 647–651.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Burr, I. W. (1973). Comm. Statist. 2., 1–21.Google Scholar
  6. [6]
    Burr, I. W. and Cisiak, P. J. (1968). J. Amer. Statist. Assoc. 63, 627–643.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Craig, C. C. (1936). Ann. Math. Statist. 7, 16–28.zbMATHCrossRefGoogle Scholar
  8. [8]
    Durling, F. C. (1969). Bivariate Probit, Logit and Burrit Analysis. Themis Signal Analysis Statistics Research Pro-gram, Tech. Rept. 41Google Scholar
  9. [9]
    Durling, F. C., Owen, D. B., and Drane, J. W. (1970). Ann. Math. Statist. 41, 1135.Google Scholar
  10. [10]
    Gradshteyn, I. S. and Ryshik, I. M. (1965). Table of Integrals, Series and Products. Academic Press, New York and London.Google Scholar
  11. [11]
    Hatke, Sister M. A. (1949). Ann. Math. Statist. 20, 461–463.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. John Wiley and Sons, Inc., New York and London.zbMATHGoogle Scholar
  13. [13]
    Pearson, E. S. and Hartley, H. O. (1966). Biometrika Tables for Statisticians, Vol. I, 3rd ed. Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  14. [14]
    Seibert, G. B., Jr. (1970). Estimation and Confidence Intervals for Quantal Response or Sensitivity Data. Themis Signal Analysis Statistics Research Program, Tech. Rept. 66, Department of Statistics, Southern Methodist University, Dallas.Google Scholar
  15. Takahasi, K . (1965). Ann. Inst. Statist. Math. (Tokyo) 17, 257–260.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Wheeler, D. J. (1970). An Alternative to an F-Test on Variances. Themis Signal Analysis Statistics Research Program, Tech. Rept. 76, Department of Statistics, Southern Methodist University, DallasGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • Frederick C. Durling
    • 1
  1. 1.University of WaikatoHamiltonNew Zealand

Personalised recommendations