Advertisement

Dependence Concepts and Probability Inequalities

  • Kumar Jogdeo
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

Summary

Concepts of positive dependence are reviewed and their applications are indicated. The role of these concepts to produce an ordering in the families of bivariate distributions is discussed. Recent results related to the concept of “association” are shown to have applications in deriving certain inequalities for the multivariate normal and related distributions. Finally a simple example illustrating somewhat unintuitive behavior of a pair of bivariate normal distributions is given.

Key Words

Positive dependence probability inequalities ordered families of bivariate distributions associated random variables multivariate unimodality contaminated independence model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, T. W. (1955). Proc. Amer. Math. Soc. 6, 170–176.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Das Gupta, S., Eaton, M. L. and others. (1970). Sixth Berkeley Symposium, Vol. II, 241–265.Google Scholar
  3. [3]
    Esary, J. D., Proschan, F. and Walkup, D. W. (1967). Ann. Math. Statist. 38, 1466–1474.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Halperin, M. (1967). J. Amer. Statist. Assoc. 62, 603–606.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Hoeffding, Wassily. (1940). Schriften. Math. Inst. Univ. Berlin 5, 181–233.Google Scholar
  6. [6]
    Jogdeo, K. (1968). Ann. Math. Statist. 39, 433–441.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Jogdeo, K. (1970). Ann. Math. Statist. 41, 1357–1359.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Jogdeo, K. (1974). Association and probability inequalities. Submitted.Google Scholar
  9. [9]
    Jogdeo, K. and Patii, G. P. (1967). Bull. Int. Statist. Inst. 42, 313–316.Google Scholar
  10. [10]
    Jogdeo, K. and Patil, G. P. (1974). Probability inequalities for certain multivariate discrete distributions. To appear in Sankhya.Google Scholar
  11. [11]
    Lehmann, E. L. (1966). Ann. Math. Statist. 37, 1137–1153.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Mallows, C. L. (1968). Biometrika 55, 422–424.zbMATHCrossRefGoogle Scholar
  13. [13]
    Mudholkar, G. S. (1972). Ann. Inst. Statist. Math. 24, 127–135.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Sidák, Z. (1967). J. Amer. Statist. Assoc. 62, 626–633.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Sidák, Z. (1968). Ann. Math. Statist. 39, 1425–1432.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Sidák, Z. (1971). Ann. Math. Statist. 42, 169–175.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Yanagimoto, T. and Okamoto, M. (1969). Ann. Inst. Statist. Math. 21, 489–506.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Yanagimoto, T. (1972). Ann. Inst. Statist. Math. 24, 559–573.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Yanagimoto, T. and Sibuya, M. (1972). Ann. Inst. Statist. Math. 24, 259–269.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Yanagimoto, T. and Sibuya, M. (1972). Ann. Inst. Statist. Math. 24, 423–434.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • Kumar Jogdeo
    • 1
  1. 1.Mathematics DepartmentUniversity of IllinoisUrbanaUSA

Personalised recommendations