Advertisement

Approximation Theory, Moment Problems and Distribution Functions

  • M. S. Ramanujan
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 17)

Summary

Results concerning distribution functions, moment problems and approximation theory are discussed.

Key Words

Approximation theory moment problem summability methods negative binomial kernel Poisson kernel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arato, M. and Renyi, A. (1957). Acta Math. Acad Sci. Hung 8, 91–98.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Bernstein, S. (1912). Commun. Soc. Math. Kharkow 13, 1–2.Google Scholar
  3. [3]
    Cheney, E. W. and Sharma, A. (1964). Canad. J. Math 16, 241–252.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Chung, K. L. (1962). Math. Scand. 10, 153–162.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Feller, W. (1966). Introduction to Probability Theory and its Applications, I I. Wiley, New York.zbMATHGoogle Scholar
  6. [6]
    Goodrich, R. K. (1966). Ph.D. Thesis, Univ. of Utah.Google Scholar
  7. [7]
    Hardy, G. H. (1949). Divergent Series, Oxford.zbMATHGoogle Scholar
  8. [8]
    Hausdorff, F. (1921). Math. Z. 9, 74-109, 280-299.Google Scholar
  9. [9]
    Hille, E. and Phillips, R. S. (1957). Functional Analysis and Semigroups, A.M. S. Colloq. Publ. 31.Google Scholar
  10. [10]
    Jakimovski, A. and Ramanujan, M.S. (1964). Math. Z. 84, 143–153.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Kendall, D. G. (1954). Math. Scand. 2. 185–186.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Korovkin, P. P. (1960). Linear Operators and Approximation Theory (Transl.), Hindustan Publ.Google Scholar
  13. [13]
    Kurtz, L. and Tucker, D. H. (1965). Proc. Amer. Math. Soc. 16, 419–428.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Kurtz, L. and Tucker, D. H. (1968). Pacific J. Math. 27, 539–545.MathSciNetGoogle Scholar
  15. [15]
    Leviatan, D. and Ramanujan, M. S. (1970). Indiana U. Math. J. 20, 97–105.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Leviatan, D. and Ramanujan, M. S. (1971). Studia Math. 39, 113–117.MathSciNetzbMATHGoogle Scholar
  17. [17]
    Lorentz, G. G. (1953). Bernstein Polynomials, Toronto.zbMATHGoogle Scholar
  18. [18]
    Meyer-Konig, W. and Zeller, K. (1960). Studia Math. 19, 89–94.MathSciNetGoogle Scholar
  19. [19]
    Patii, G. P. and Joshi, S. W. (1968). A Dictionary and Bibliography of Discrete Distributions. Hafner, New York.Google Scholar
  20. [20]
    Pethe, S. P. and Jain, G. C. (1972). Canad. Math. Bull. 15, 551–557.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Ramanujan, M. S. (1953). J. Indian Math. Soc. 179 47–53MathSciNetGoogle Scholar
  22. [22]
    Ramanujan, M. S. (1957). Quart. J. Math. (Oxford) 8,197–213Google Scholar
  23. [23]
    Ramanujan, M. S. (1964). Archiv der Math. 15, 71–75MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Ramanujan, M. S. (1962). Indian J. Math. 4, 87–91MathSciNetzbMATHGoogle Scholar
  25. [25]
    Ramanujan, M. S. (1967). Rend. Circ. Mat. Palermo 16, 353–362.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Rooney, P. G. (1960). Proc. Amer. Math. Soc. 11, 762–768.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Szasz, O. (1950). J. Res. Nat. Bur. Standards 45, 239–345.MathSciNetGoogle Scholar
  28. [28]
    Yosida, K. (1938). Proc. Imp. Acad. Tokyo 14, 292 –294.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Yosida, K. (1965). Functional Analysis, SpringerzbMATHGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • M. S. Ramanujan
    • 1
  1. 1.The University of MichiganAnn ArborUSA

Personalised recommendations