Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 15))

Abstract

It is desirable to obtain highly accurate solutions to the Schrodinger equation

Where

Here we are working in atomic units, and the Born-Oppenheimer [1] approximation has been used to separate the motion of the nuclei from that of the electrons. I, J denote nuclei; i, j denote electrons and denotes the distance between nucleus I and electron i. In addition to equation (1), the wavefunction must obey the Pauli Principle

Where permutes the coordinates of electrons i and j.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born M. and Oppenheimer J.R. (1927) Ann. Phys. 84, 457

    Article  Google Scholar 

  2. Handy N.C. in the volume on Theoretical Chemistry, in Physical Chemistry, Series 2, of the Medical and Technical Publishing Company’s biennial reviews of science (to be published)

    Google Scholar 

  3. Boys S.F. (1969) Proc. Roy. Soc. (London) A309, 195

    Article  Google Scholar 

  4. Hylleraas E.A. (1929) Z. Physik 54, 347

    Article  Google Scholar 

  5. Pekeris C.L. (1958) Phys. Rev. 112, 1649

    Article  MathSciNet  MATH  Google Scholar 

  6. James H.M. and Coolidge A.S. (1933) J. Chem. Phys. 1, 825

    Article  Google Scholar 

  7. Kolos W. and Wolniewicz L. (1968) Phys. Rev. Lett. 20, 243

    Article  Google Scholar 

  8. Herzberg G. (1970) Phys. Rev. Lett. 23, 1081

    Article  Google Scholar 

  9. James H.M. and Coolidge A.S. (1936) Phys. Rev. 49, 688

    Article  MATH  Google Scholar 

  10. Larsson S. (1968) Phys. Rev. 169, 49

    Article  Google Scholar 

  11. Szasz L. and Byrne J. (1967) Phys. Rev. 158, 34

    Article  Google Scholar 

  12. Sims J.S. and Hagstrom S. (1971) Phys. Rev. A4, 908

    Google Scholar 

  13. Bunge C.F. (1968) Phys. Rev. 168, 92

    Article  Google Scholar 

  14. Boys S.F. and Handy N.C. (1969) Proc. Roy. Soc. (London) A309, 209;

    Article  Google Scholar 

  15. Boys S.F. and Handy N.C. (1969) Proc. Roy. Soc. (London) A310, 43.

    Article  Google Scholar 

  16. Handy N.C. (1972) Mol. Phys. 23, 1.

    Article  Google Scholar 

  17. Handy N.C. (1969) J. Chem. Phys. 51, 3205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Handy, N.C. (1975). Correlated Wavefunctions. In: Diercksen, G.H.F., Sutcliffe, B.T., Veillard, A. (eds) Computational Techniques in Quantum Chemistry and Molecular Physics. NATO Advanced Study Institutes Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1815-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1815-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1817-3

  • Online ISBN: 978-94-010-1815-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics