Hydrogen Chemistry: Perspective on Experiment and Theory

  • Frederick Kaufman
Part of the Space Science Library book series (ASSL, volume 51)


In view of the rapidly accelerating pace of research in atmospheric kinetics, it is increasingly difficult to review a subject as large as the relevant ‘hydrogen’ chemistry. This subject may be discussed broadly in terms of the principal mechanisms which are thought to operate in planetary atmospheres, particularly in the terrestrial stratosphere and mesosphere. But such a discussion would necessarily be both superficial and repetitive. Alternately, one may be tempted to do a quick review of the vast store of kinetic information on the many reactions of H, OH, HO2, H2O2, HCl, HNO3, etc., in order to bring such information up to date. This is a laudable objective, but a note of caution must be sounded. Although it was very important that reviews of that type were first undertaken 10 to 15 yr ago (Kaufman, 1964) when experimental work on elementary reactions was barely getting under way, the situation is very different today, and the reviewing task is either a full-time occupation or an arduous labor of love. It is therefore particularly important that the users of reaction rate information, i.e. aeronomic modelers, not be confronted with too many alternate and often contradictory sources, because such alternate sources of input data cloud the comparison of modeling calculations. Modelers must therefore be encouraged to use the best, most up-to-date sources such as the Leeds evaluations (Baulch et al., 1972) the NSRDS-NBS monographs (e.g., Johnston, 1968), the most recent NBS evaluations (e.g., Garvin and Hampson, 1974), review papers in the Journal of Physical Chemical Reference Data and in the International Journal of Chemical Kinetics such as those on OH (Wilson, 1972) and HO2 reactions (Lloyd, 1974) and on stratospheric reactions (Hampson, 1973). The CODATA-3 Bulletin (Garvin, 1971) and the ‘review of reviews’ paper by Gevantman and Garvin (1973) are particularly valuable guides to and through the reviews thicket.


Electron Spin Resonance Transition State Theory Flash Photolysis Unimolecular Reaction Arrhenius Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. G. and Kaufman, F.: 1973, Chem. Phys. Letters. 19, 483.ADSCrossRefGoogle Scholar
  2. Anderson, J. G., Margitan, J. J., and Kaufman, F.: 1974, J.Chem. Phys. 60, 3310.ADSCrossRefGoogle Scholar
  3. Baldwin, R. R., Jackson, D., Walker, R. W., and Webster, S. J.: 1967, Trans. Faraday Soc. 63, 1665, 1676.CrossRefGoogle Scholar
  4. Baldwin, R. R., Fuller, M. E., Hillman, J. S., Jackson, D., and Walker, R. W.: 1974, J. C. S. Faraday I, 70, 635.CrossRefGoogle Scholar
  5. Baulch, D. L., Drysdale, D. D., Horne, D. G., and Lloyd, A. C.: 1972, 1973, Evaluated Kinetic Data for High Temperature Reactions, vols. 1 and 2, Butterworth and Co., London, Chemical Rubber Co., Cleveland, Ohio, U. S. A.Google Scholar
  6. Bennett, J. E. and Blackmore, D. R.: 1971, 13th Symposium (International) on Combustion, The Combustion Institute, p. 57.Google Scholar
  7. Benson, S. W.: 1968, Thermochemical Kinetics, Wiley and Sons, New York.Google Scholar
  8. Braun, W. and Lenzi, M.: 1967, Faraday Discussions 44, 252.CrossRefGoogle Scholar
  9. Clyne, M. A. A. and Thrush, B. A.: 1963, Proc. R. Soc. London A275, 559.ADSGoogle Scholar
  10. Davis, D. D., Braun, W., and Bass, A. M.: 1970, Intl. J. Chem. Kin. 2, 101.CrossRefGoogle Scholar
  11. Day, M. J., Thompson, K., and Dixon-Lewis, G.: 1973, 14th Symposium (International) on Combustion, The Combustion Institute, p. 47.Google Scholar
  12. DeMore, W. B.: 1973, Science 180, 735.ADSCrossRefGoogle Scholar
  13. Dixon-Lewis, G.: 1968, Proc. R. Soc. Lond. A307, 111.ADSGoogle Scholar
  14. Dixon-Lewis, G., Greenberg, J. B., and Goldsworthy, F. A.: 1974, Paper, 15th Combustion Symposium, Tokyo.Google Scholar
  15. Dodonov, A. F., Lavroskaya, G. K., and Talroze, V. L.: 1969, Kin. i. Kat. 10, 701.Google Scholar
  16. Ferguson, E. E., Fehsenfeid, F. C., and Schmeltekopf, A. L.: 1969, in Advances in Atomic and Molecular Physics, vol. 5, Academic Press Inc., New York, p. 1.Google Scholar
  17. Foner, S. N. and Hudson, R. L.: 1962, J.Chem. Phys. 36, 2681.ADSCrossRefGoogle Scholar
  18. Forst, W.: 1973, Theory of Unimolecular Reactions, Academic Press, New York.Google Scholar
  19. Garvin, D.: 1971, CODATA 3 Bulletin, NBS, Washington, DC 20234, U.S.A.Google Scholar
  20. Garvin, D. and Hampson, R. F. (eds.): 1974, Chemical Kinetics Data Survey VII, Data for Modelling of the Stratosphere, NBSIR 74-430.Google Scholar
  21. Gevantman, L. H. and Garvin, D.: 1973, Intl. J. Chem. Kin. 5, 213.CrossRefGoogle Scholar
  22. Greiner, N. R.: 1970, J.Chem. Phys. 53, 1070.ADSCrossRefGoogle Scholar
  23. Hampson, R. F., Editor: 1973, Phys. Chem. Ref. Data 2, 267.Google Scholar
  24. Hochanadel, C. J., Ghormley, J. A., and Ogren, P. T.: 1972, J.Chem. Phys. 56, 4426.ADSCrossRefGoogle Scholar
  25. Howard, C. J. and Evenson, K. M.: 1974, J.Chem. Phys. 61, 1943.ADSCrossRefGoogle Scholar
  26. Johnston, H. S.: 1968, Gas Phase Reaction Kinetics of Neutral Oxygen Species, NSRDS-NBS 20.Google Scholar
  27. Kaufman, F.: 1961, in G. Porter (ed.), Progress in Reaction Kinetics, vol. 1., Pergamon, New York, p. 1.Google Scholar
  28. Kaufman, F.: 1964, Ann. Geophys. 20, 106.Google Scholar
  29. Laidler, K. J.: 1969, Theories of Chemical Reaction Rates, McGraw-Hill, New York.Google Scholar
  30. Lloyd, A. C.:1974, Intl. J. Chem. Kin. 6, 1969.Google Scholar
  31. Margitan, J. J., Kaufman, F., and Anderson, J. G.: 1974, J.Geophys. Res. Letters 1, 80.ADSCrossRefGoogle Scholar
  32. Mayer, S. W., Schieler, L., and Johnston, H. S.: 1966, J. Chem. Phys. 45, 385.ADSCrossRefGoogle Scholar
  33. Morley, C. and Smith, I. W. M.: 1972, J.Chem. Soc. Faraday II 68, 1016.CrossRefGoogle Scholar
  34. Paukert, T. T. and Johnston, H. S.: 1972, J.Chem. Phys. 56, 2824.ADSCrossRefGoogle Scholar
  35. Poirier, R. V. and Carr, R. W.: 1971, J.Phys. Chem. 75, 1593.CrossRefGoogle Scholar
  36. Robinson, P. J. and Holbrook, K. A.: 1972, Unimolecular Reactions, Wiley-Interscience, London.Google Scholar
  37. Simonaitis, R. and Heicklen, J.: 1973, J.Photochem. 2, 309.CrossRefGoogle Scholar
  38. Smith, I. W. M. and Zellner, R.: 1974, J.Chem. Soc. Faraday II, in press.Google Scholar
  39. Takacs, G. A. and Glass, G. P.: 1973, J.Phys. Chem. 77, 1948.CrossRefGoogle Scholar
  40. Tsang, W.: 1973, Intl. J. Chem. Kin. 5, 947.CrossRefGoogle Scholar
  41. Tully, J. C.: 1974, J. Chem. Phys. 61, 61.ADSCrossRefGoogle Scholar
  42. Westenberg, A. A. and deHaas, N.: 1967, J.Chem. Phys. 46, 490.ADSCrossRefGoogle Scholar
  43. Westenberg, A. A. and deHaas, N.: 1969, J.Chem. Phys. 50, 707.ADSCrossRefGoogle Scholar
  44. Westenberg, A. A. and deHaas, N.: 1972a, J.Chem. Phys. 57, 5375.ADSCrossRefGoogle Scholar
  45. Westenberg, A. A. and deHaas, N.: 1972b, J.Phys. Chem. 76, 1586.CrossRefGoogle Scholar
  46. Wilson, W. E., Jr.: 1972, J.Phys. Chem. Ref. Data 1, 535.CrossRefGoogle Scholar
  47. Wilson, W. E., Jr., O’Dbnovan, J. T., and Fristrom, R. M.: 1969, 12th Symposium (International) on Combustion, The Combustion Institute, p. 929.Google Scholar
  48. Zahniser, M. S., Kaufman, F., and Anderson, J. G.: 1974, Chem. Phys. Letters 27, 507.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1975

Authors and Affiliations

  • Frederick Kaufman
    • 1
  1. 1.Department of ChemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations