A Reassessment of Atmospheric Pollution as a Cause of Long-Term Changes of Global Temperature

  • J. Murray MitchellJr.

Abstract

Two globally extensive forms of atmospheric pollution (carbon dioxide and particulate loading) are each considered from the viewpoint of long-term changes in their total abundance, and the impact of such changes on the equilibrium temperature of the Earth.

A comparison of the observed levels of atmospheric CO2 since 1958 with estimates of the fossil CO2 input to the atmosphere from human activities indicates that between 50 and 75% of the latter has remained in the atmosphere. The present-day CO2 excess (referred to 1850) is estimated at 11%; the excess is conservatively projected to increase to 15% by 1980, 22% by 1990, and 32% by 2000 A.D. Changes of mean atmospheric temperature due to C02, calculated by Manabe et al. [20] as about 0.3°C per 10% change of CO2, are sufficient to account for only about one-third of the observed warming of the Earth between 1880 and 1940, but would appear capable of contributing a further warming of about 0.6°C between the present time and the end of the century.

The total global atmospheric loading by small particles is estimated at about 4 × 107 tons at present, of which about 1 × 107 tons is derived directly or indirectly from human activities. If the anthropogenic fraction should grow in the future at about 4% yr-1, the total loading would increase to a level at the end of this century about double that of the 19th century, and 60% above present-day levels. At present, the total anthropogenic loading is estimated to exceed the average stratospheric loading by volcanic dust during the past 120 yr, and to equal about one-fifth of the stratospheric loading following the 1883 eruption of Krakatoa. The impact of anthropogenic particle loading changes on mean temperature cannot be reliably determined from present information although a cooling effect is likely.

Of the two forms of pollution, it appears that the carbon dioxide increase is more influential in raising planetary temperatures than the anthropogenic particle increase is in lowering planetary temperatures. (If, however, both the CO2 and particle inputs to the atmosphere should grow at equal rates in the future, the relative importance of particle effects will increase and could eventually become dominant.) In balance, the net thermal impact of all global-scale pollution (including thermal pollution) is likely to be one of warming, perhaps increasingly so after 2000 A.D. It is concluded that the cooling of climate since 1940, apparently still in progress, is a natural phenomenon plausibly related to an enhanced stratospheric loading by volcanic dust in the period. Natural variations of climate have been larger than those probably induced by human activities during the past century, but the rapidity with which human impacts on atmospheric quality threaten to grow in the future has disturbing climatic overtones that demand better understanding.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U.S. Public Health Service: Air Over Cities, SEC Tech. Report A62–5, Cincinnati (1962).Google Scholar
  2. 1a.
    U.S. Public Health Service: Air Quality Criteria for Particulate Matter, NAPCA Publ. No. AP-49, U.S. Government Printing Office (1969).Google Scholar
  3. 1b.
    Robinson, E.: in A. C. Stern (ed.), Air Pollution, Academic Press, N.Y., Vol. I, pp. 349–400 (1968).Google Scholar
  4. 2.
    Junge, C. E.: Air Chemistry and Radioactivity, Academic Press, N.Y., p. 228 (1963).Google Scholar
  5. 2a.
    Robinson, E. and Robbins, R. C.: Sources, Abundance and Fate of Gaseous Atmospheric Pollutants, American Petroleum Institute, N.Y. (1968).Google Scholar
  6. 3.
    Lamb, H. H. and Johnson, A. I.: Geogr. Ann. 41, 94–134 (1959)Google Scholar
  7. 3a.
    ibid. 43, 363–400 (1961).CrossRefGoogle Scholar
  8. 3b.
    Lamb, H. H.: in H. Flohn (ed.), World Survey of Climatology, Vol. 2, Elsevier Publishing Company, Amsterdam, pp. 173–249 (1969).Google Scholar
  9. 3c.
    Lamb, H. H.: Climate, Present, Past and Future, Vol. 1, Methuen, London/Barnes and Noble, N.Y. (1972).Google Scholar
  10. 4.
    Mitchell, J. M., Jr.: in H. E. Wright and D. G. Frey (eds.), The Quaternary of the United States, Princeton University Press, pp. 881–901 (1965).Google Scholar
  11. 4a.
    Mitchell, J. M., Jr.: in R. W. Fairbridge (ed.), Encyclopedia of Atmospheric Sciences and Astrogeology, Reinhold Publishing Co., pp. 211–213 (1967).Google Scholar
  12. 5.
    Mitchell, J. M., Jr.: Ann. N.Y. Acad Sci. 95, 235–250 (1961).CrossRefGoogle Scholar
  13. 5a.
    Mitchell, J. M., Jr.: in Changes of Climate, Arid Zone Research, XX, UNESCO, Paris, pp. 161–181 (1963).Google Scholar
  14. 5b.
    Wilson, C. L. et al. (eds.), Inadvertent Climate Modification (SMIC Report), MIT Press, Cambridge, Mass., pp. 40–45 (1971).Google Scholar
  15. 6.
    Reitan, C. H.: An Assessment of the Role of Volcanic Dust in Determining Modern Changes in the Temperature of the Northern Hemisphere, Ph.D. Thesis, Univ. of Wis.-Madison, Xerox University Microfilms, Ann Arbor, Mich. (1971).Google Scholar
  16. 7.
    Emiliani, C.: in K. K. Turekian (ed.), The Late Cenozoic Glacial Ages, Yale University Press, New Haven, pp. 183–197 (1971).Google Scholar
  17. 8.
    Machta, L.: in D. Dyrssen and D. Jagner (ed.), ‘The Changing Chemistry of the Oceans’, Nobel Symp. 20, Almqvist and Wiksell, Stockholm, John Wiley and Sons, N.Y., pp. 121–145 (1972).Google Scholar
  18. 9.
    Machta, L. and Telegadas, K.: in W. N. Hess (ed.), Weather Modification, John Wiley and Sons, N.Y. (in press) (1973).Google Scholar
  19. 10.
    Callendar, G. S.: Tellus 10, 243–248 (1958)CrossRefGoogle Scholar
  20. 10a.
    C. E. Junge in [2].Google Scholar
  21. 11.
    Keeling, C. D.: personal communication.Google Scholar
  22. 12.
    Pales, J. C. and Keeling, C. D.: J. Geophys. Res. 70, 6053–6075 (1965).CrossRefGoogle Scholar
  23. 12a.
    Brown, C. W. and Keeling, C. D.: J. Geophys. Res. 70, 6077–6085 (1965).CrossRefGoogle Scholar
  24. 13.
    Machta, L.: personal communication.Google Scholar
  25. 14.
    Kelly, J. J., Jr.: An Analysis of Carbon Dioxide in the Arctic Atmosphere near Barrow, Alaska, 1961 to 1967, Scientific Report, Dept. of Atmospheric Sciences, University of Washington (1969).Google Scholar
  26. 14a.
    Bolin, B. and Bischof, W.: Tellus 22, 431–442 (1970).CrossRefGoogle Scholar
  27. 14b.
    Bischof, W.: Summary of Recent Carbon-Dioxide Measurements in the Atmosphere, Summary Letter 11/1813, Institute of Meteorology, University of Stockholm (1971).Google Scholar
  28. 14c.
    Keeling, C. D., Adams, J. A., Ekdahl, C. A., and Guenther, P. R.: Atmospheric Carbon Dioxide Variations at the South Pole, 1957–1970 (in preparation) (1972).Google Scholar
  29. 15.
    Revelle, R. and Suess, H. E.: Tellus 9, 18–27 (1957).CrossRefGoogle Scholar
  30. 16.
    Keeling, C. D.: Industrial Production of Carbon Dioxide from Fossil Fuels and Limestone (to appear in Tellus) (1973).Google Scholar
  31. 17.
    Rotty, R. M.: personal communication.Google Scholar
  32. 18.
    Pytkowicz, R. M.: Fossil Fuel Burning and Carbon Dioxide — A Pessimistic View (to appear in Comments on Earth Sciences: Geophysics, Gordon and Breach, N.Y.) (1973).Google Scholar
  33. 18a.
    Keeling, C. D., Bacastow, R., and Ekdahl, C. A.: Diminishing Role of the Oceans in Industrial CO 2 Uptake During the Next Century (in preparation) (1973).Google Scholar
  34. 19.
    Bolin, B. and Eriksson, E.: in B. Bolin (ed.), The Atmosphere and Sea in Motion, Rockefeller/Oxford Press, pp. 130–142 (1959)Google Scholar
  35. 19a.
    C. E. Junge in [2].Google Scholar
  36. 20.
    Manabe, S. and Strickler, R. F.: J. Atmos. Sci. 21, 361–385 (1964).CrossRefGoogle Scholar
  37. 20a.
    Manabe, S. and Wetherald, R. T.: J. Atmos. Sci. 24, 241–259 (1967).CrossRefGoogle Scholar
  38. 21.
    Wetherald, R. T.: personal communication.Google Scholar
  39. 22.
    Rasool, S. I. and Schneider, S. H.: Science 173, 138–141 (1971).CrossRefGoogle Scholar
  40. 22a.
    Barrett, E. W.: Solar Energy 13, 323–337 (1971).CrossRefGoogle Scholar
  41. 22b.
    Bryson, R. A. and Wendland, W. M.: in S. F. Singer (ed.), Global Effects of Environmental Pollution, Springer-Verlag N.Y./D. Reidel Publ. Co., Dordrecht, pp. 130–138 (1970).Google Scholar
  42. 22b.
    Budyko, M. I.: Tellus 21, 611–619 (1969).CrossRefGoogle Scholar
  43. 22c.
    McCormick, R. A. and Ludwig, J. H.: Science 156, 1358–1359 (1967).CrossRefGoogle Scholar
  44. 23.
    Peterson, J. T.: The Climate of Cities, A Survey of Recent Literature, National Air Pollution Control Admin., Publ. No. AP-59 (1969).Google Scholar
  45. 23a.
    Ludwig, J. H., Morgan, G. B., and McMullen, T. B.: Eos. 51, 468–475 (1970).Google Scholar
  46. 24.
    Davitaia, F. F.: Trans. Soviet Acad. Sci., Geogr. Ser., No. 2, pp. 3–33 (1965).Google Scholar
  47. 25.
    Cobb, W. E. and Wells, H. E.: J. Atmos. Sci. 27, 814–819 (1970).CrossRefGoogle Scholar
  48. 26.
    McCormick, R. A. and Ludwig, J. H.: Science 156, 1358–1359 (1967).CrossRefGoogle Scholar
  49. 26a.
    Ellis, H. T. and Pueschel, R. F.: Science 172, 845–846 (1971).CrossRefGoogle Scholar
  50. 26b.
    Pueschel, R. F., Machta, L., Cotton, G. F., Flowers, E. C., and Peterson, J. T.: Nature 240, 545–547 (1972).CrossRefGoogle Scholar
  51. 26c.
    Peterson, J. T. and Bryson, R. A.: Science 162, 120–122 (1968).CrossRefGoogle Scholar
  52. 27.
    Hodge, P. W., Laulainen, N., and Charlson, R. J.: Science 178, 1123–1124 (1972).CrossRefGoogle Scholar
  53. 28.
    Cobb, W. E.: J. Atmos. Sci. 30, 101–106 (1973).CrossRefGoogle Scholar
  54. 29.
    Wilson, C. L. et al. (eds.), Man’s Impact on the Global Environment (SCEP Report), MIT Press, Cambridge, Mass. (1970).Google Scholar
  55. 29a.
    Wilson, C. L. et al. (eds.), Inadvertent Climate Modification (SMIC Report), MIT Press, Cambridge, Mass. (1971).Google Scholar
  56. 29b.
    Matthews, W. H., Kellogg, W. W., and Robinson, G. D. (eds.), Man’s Impact on the Climate, MIT Press, Cambridge, Mass. (1971).Google Scholar
  57. 29c.
    Flohn, H.: personal communication; Machta, L.: personal communication; see also [9].Google Scholar
  58. 30.
    Englemann, R. J. and Slin, W. G. N.: (eds.), Precipitation Scavenging (1970), U.S. Atomic Energy Comm., Oak Ridge, Tenn./National Technical Information Center, Springfield, Va.Google Scholar
  59. 30a.
    Poet, S. E., Moore, H. E., and Martell, E. A.: J. Geophys. Res. 77, 6515–6527 (1972).CrossRefGoogle Scholar
  60. 31.
    Dyer, A. J. and Hicks, B. B.: Quart. J. Roy. Meteorol. Soc. 94, 545–554 (1968)CrossRefGoogle Scholar
  61. 31a.
    C. E. Junge in [2].Google Scholar
  62. 32.
    Lamb, H. H.:Phyl. Trans. Roy. Soc. London, A 266, 425–533 (1970).CrossRefGoogle Scholar
  63. 33.
    Deirmendjian, D.: Global Turbidity Studies. I. Volcanic Dust Effects — A Critical Survey, Report R-886-ARPA, Rand Corp., Santa Monica (1971).Google Scholar
  64. 33a.
    Cronin, J. F.: Science 172, 847–850 (1971).CrossRefGoogle Scholar
  65. 33b.
    Volz, F. E.: Appl. Optics 8, 2505–2517 (1969).CrossRefGoogle Scholar
  66. 34.
    Mitchell, J. M., Jr.: in S. F. Singer (ed.), Global Effects of Environmental Pollution, Springer-Verlag N.Y./D. Reidel Publ. Co., Dordrecht, pp. 139–155 (1970).Google Scholar
  67. 35.
    Ellis, H. T. and Pueschel, R. F.: Science 172, 845–846 (1971).CrossRefGoogle Scholar
  68. 36.
    Bullrich, K.: 1964, in H. E. Landsberg (ed.), Advances of Geophysics, Academic Press, N.Y., pp. 99–260 (1964).Google Scholar
  69. 36a.
    Deirmendjian, D.: Electromagnetic Scattering on Spherical Poly dispersons, American Elsevier, N.Y. (1969).Google Scholar
  70. 36b.
    Van de Hulst, H. C.: Light Scattering by Small Particles, John Wiley and Sons, N.Y. (1957).Google Scholar
  71. 36c.
    Plass, G. N.: Appl. Optics 5, 279–285 (1966).CrossRefGoogle Scholar
  72. 36d.
    Braslau, N. and Dave, J. V.: Effect of Aerosols on the Transfer of Solar Energy through Realistic Model Atmospheres (to appear in J. Appl. Meteorol.), (1973).Google Scholar
  73. 37.
    Robinson, G. D.: Long-Term Effects of Air Pollution — A Survey, Center for the Environment and Man, Inc., Hartford, pp. 21–24 (1970).Google Scholar
  74. 38.
    Eiden, R.: Appl. Optics 5, 569–575 (1966)CrossRefGoogle Scholar
  75. 38a.
    ibid. 10, 749–754.CrossRefGoogle Scholar
  76. 38b.
    Fischer, K.: Beitr. Physik Atmosphäre 43, 244–254 (1970).Google Scholar
  77. 39.
    Ensor, D. S., Porch, W. M., Pilat, M. J., and Charlson, R. J.: J. Appl. Meteorol. 10, 1303–1306 (1971).CrossRefGoogle Scholar
  78. 40.
    Mitchell, J. M., Jr.: J. Appl. Meteorol. 10, 703–714 (1971).CrossRefGoogle Scholar
  79. 40a.
    Mitchell, J. M., Jr.: in Proc. Internat. Symposium on Physical and Dynamical Climatology, Leningrad, 1971, World Meteorological Organization, Geneva (in press) (1973).Google Scholar
  80. 41.
    Yamamoto, G. and Tanaka, M.: J. Atmos. Sci 29, 1405–1412 (1972).CrossRefGoogle Scholar
  81. 42.
    Rasool, S. I. and Schneider, S. H.: Science 173, 138–141 (1971).CrossRefGoogle Scholar
  82. 43.
    Dwyer, H. A. and Petersen, T.: J. Appl. Meteorol. 12, 36–42 (1973).CrossRefGoogle Scholar
  83. 43a.
    Bryson, R. A. and Wendland, W. M.: this volume, pp. 139–147.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • J. Murray MitchellJr.
    • 1
  1. 1.National Oceanic and Atmospheric AdministrationSilver SpringUSA

Personalised recommendations