Skip to main content

Adiabatic Limit in Perturbation Theory

  • Conference paper
Renormalization Theory

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 23))

Abstract

We show that, with correct mass and wave function renormalization, the time-ordered products for Wick polynomials T(ℒ(y1)…ℒ(yn)) constructed by a method outlined in a previous paper[1] are such that the vectors of the form

$$ \int {T\left( {\mathcal{L}\left( {{{y}_{1}}} \right) \ldots \mathcal{L}\left( {{{y}_{n}}} \right)} \right)g\left( {{{y}_{1}}} \right) \ldots g\left( {{{y}_{1}}} \right) \ldots g\left( {{{y}_{n}}} \right)\psi d{{y}_{1}} \ldots d{{y}_{n}}} $$

have limits when g tends to a constant, provided ¥ is chosen in a suitable dense domain. It follows that the S matrix has unitary adiabatic limit as an operator-valued formal power series in Fock space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Epstein and V. Glaser — CERN Preprint TH. 1156 (1970), reprinted in Prépublications de la R.C.P. No 25, Vol. 11, Strasbourg (1970), and Proceedings of the 1970 Summer School of Les Houches.

    Google Scholar 

  2. H. Epstein V. Glaser Ann Inst. H. Poincaré 19, 211 (1973)

    MathSciNet  Google Scholar 

  3. NN. Bogoliubov VS Vladimirov, Nauchnye Dokl. Vysshei Shkoly, N. 3, 26 (1958) and N. 2, 179 (1959).

    Google Scholar 

  4. NN. Bogoliubov VS Vladimirov, Nauchnye Dokl. Vysshei Shkoly, N. 3, 26 (1958) and N. 2, 179 (1959).

    Google Scholar 

  5. J. Bros. H. Epstein,V. Glaser, Commun. Math. Phys. 6, 77 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Epstein, H., Glaser, V. (1976). Adiabatic Limit in Perturbation Theory. In: Velo, G., Wightman, A.S. (eds) Renormalization Theory. NATO Advanced Study Institutes Series, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1490-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1490-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1492-2

  • Online ISBN: 978-94-010-1490-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics