Skip to main content

Classical Electrodynamics in Terms of a Direct Interparticle Hamiltonian

  • Chapter
Quantum Mechanics, Determinism, Causality, and Particles

Part of the book series: Mathematical Physics and Applied Mathematics ((MPAM,volume 1))

  • 306 Accesses

Abstract

A usual-time Hamiltonian formalism for the Wheeler-Feynman Theory of Classical Electrodynamics is presented in which: (i) momenta canonically conjugate to the particle coordinates are defined and the associated problem of the inversion of these defining relations for particle velocities in terms of the particle coordinates and canonical momenta is formally solved; (ii) the equations of motion for the canonical variables are expressed in the Hamiltonian form; (iii) the usual definition and properties of the Poisson bracket are preserved. There are two new and essential properties of the Hamiltonian in this theory: (i) it is a functional of the canonical variables, as well as a function of them; (ii) in general, it is not conserved in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. Schwarzschild, K., Göttinger Nachrichten 128 (1903), 132.

    Google Scholar 

  2. Tetrode, H., Z. Phys. 10 (1922), 317.

    Article  ADS  Google Scholar 

  3. Fokker, A. D., Z. Phys. 58 (1929), 386

    Article  ADS  Google Scholar 

  4. Fokker, A. D., Physica 9 (1929), 33

    Google Scholar 

  5. Fokker, A. D., Fokker, A. D., Z. Phys. 12 (1932), 145.

    MATH  Google Scholar 

  6. Wheeler, J. A. and Feynman, R. P., Rev. Mod. Phys. 17 (1945), 157

    Article  ADS  Google Scholar 

  7. Wheeler, J. A. and Feynman, R. P., Rev. Mod. Phys. 21 (1949), 425.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Dirac, P. A. M., Proc. Roy. Soc. (London) A167 (1938), 148.

    Article  ADS  Google Scholar 

  9. Gupta, Suraj N., Proc. Phys. Soc. (London) A64 (1951), 50.

    Article  ADS  Google Scholar 

  10. Feynman, R. P., ‘Nobel Lecture’, Physics Today 19 (1966), 31.

    Article  Google Scholar 

  11. Dettman, J. W. and Schild, A., Phys. Rev. 95 (1954), 1057.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. See e.g. Rzewuski, Jan, Field Theory, Part I, PWN-Polish Scientific Publishers, Warsaw, 1964.

    Google Scholar 

  13. Bergmann, P.G., Introduction to the Theory of Relativity, Prentice-Hall, Inc., New York, 1942.

    MATH  Google Scholar 

  14. Einstein, A., Ann. Physik 17 (1905), 891.

    Article  ADS  Google Scholar 

  15. Einstein, A., Ann. Physik 17 (1905), 132.

    Article  ADS  Google Scholar 

  16. de Broglie, L., Comptes Rendus 177 (1923), 507, 548, 630

    Google Scholar 

  17. de Broglie, L., Nature 112 (1923), 540, These de doctorat, Masson, Paris, 1924.

    Google Scholar 

  18. Schrödinger, E., Ann. Physik 79 (1926), 361, 489

    Article  Google Scholar 

  19. Schrödinger, E., Ann. Physik 80 (1926), 437

    Article  Google Scholar 

  20. Schrödinger, E., Ann. Physik 81 (1926), 109.

    Article  Google Scholar 

  21. Andersen, C. M. and von Baeyer, Hans C., Annals of Physics 60 (1970), 67.

    Article  MathSciNet  ADS  Google Scholar 

  22. Schild, A., Phys. Rev. 131 (1963), 2762.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. See e.g. Bethe, H. A. and Salpeter, E. E., Handbuch der Physik (ed. by S. Flugge), Vol. XXXV, p. 170, Springer, Berlin 1957.

    Google Scholar 

  24. Dirac, P. A. M., Proc. Roy. Soc. (London) A117 (1928), 610

    Article  ADS  MATH  Google Scholar 

  25. Dirac, P. A. M., Proc. Roy. Soc. (London) A118 (1928), 351

    Article  ADS  MATH  Google Scholar 

  26. Dirac, P. A. M., The Principles of Quantum Mechanics, 4th ed., Oxford University Press, London, 1958.

    MATH  Google Scholar 

  27. Aharonov, Y. and Bohm, D., Phys. Rev. 115 (1959), 485.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Flato Z. Maric A. Milojevic D. Sternheimer J. P. Vigier

Rights and permissions

Reprints and permissions

Copyright information

© 1976 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Anderson, R.L., Nagel, J.G. (1976). Classical Electrodynamics in Terms of a Direct Interparticle Hamiltonian. In: Flato, M., Maric, Z., Milojevic, A., Sternheimer, D., Vigier, J.P. (eds) Quantum Mechanics, Determinism, Causality, and Particles. Mathematical Physics and Applied Mathematics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1440-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1440-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1442-7

  • Online ISBN: 978-94-010-1440-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics