Skip to main content

Triplet Overhauser Mechanism of CIDNP

  • Conference paper
Book cover Chemically Induced Magnetic Polarization

Part of the book series: Nato Advanced Study Institutes Series ((ASIC,volume 34))

Abstract

Soon after the discovery of CIDNP it was proposed that the observed nuclear spin polarizations resulted from a small deviation from equilibrium in the electron spin states of the chemically generated radicals (such as all states equally populated), which was converted by electron-nuclear cross relaxation into a large deviation of the nuclear spin states from thermal equilibrium [1, 2]. This model is often called an Overhauser mechanism, because of its similarity to the Overhauser effect in which microwave pumping of the electron spin states of a paramagnetic species in a magnetic field leads to large nuclear spin polarizations [3]. This model failed to account for many features of CIDNP, however, and it was superseded by the radical pair mechanism [4, 5]. This did not prove the Overhauser mechanism is nonexistent, however. It could be that it is usually much less efficient than the radical pair mechanism, which therefore dominates the polarization process and hides the smaller effects of the Overhauser mechanism. If so, the Overhauser mechanism could be important in cases where the radical pair mechanism is inoperative, or if there is a very large initial electron spin polarization.

This work has been supported by the U. S. Naval Sea Systems Command under Contract N00017-72-C-4401.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bargon and H. Fischer, Z. Natürforsch 22a, 1556 (1967).

    Google Scholar 

  2. R.G. Lawler, J. Am. Chem. Soc. 89, 5518 (1967).

    Article  Google Scholar 

  3. K.H. Hauser and D. Stehlik, Adv. Magn. Reson. 3, 79 (1968).

    Google Scholar 

  4. A. Carrington and A.D. McLachlan, Introduction to Magnetic Resonance (Harper & Row, New York, 1967) pp. 229–233.

    Google Scholar 

  5. G.L. Closs, J. Am. Chem. Soc. 91, 4552 (1969).

    Article  CAS  Google Scholar 

  6. G.L. Closs and A.D. Trifunac, J. Am. Chem. Soc. 92, 2183 (1970).

    Article  CAS  Google Scholar 

  7. R. Kaptein and L.J. Oosterhoff, Chem. Phys. Lett. 4, 195 (1969); ibid. p. 214.

    Article  CAS  Google Scholar 

  8. P.W. Atkins, I.C. Buchanan, R.C. Gurd, K.A. McLauchlan and A.F. Simpson, Chem. Commun., 513 (1970).

    Google Scholar 

  9. S.K. Wong, D. A. Hutchinson and J.K.S. Wan, J. Am. Chem. Soc. 95, 622 (1973).

    Article  CAS  Google Scholar 

  10. A. J. Dobbs and K.A. McLauchlan, Chem. Phys. Lett. 30, 257 (1975).

    Article  CAS  Google Scholar 

  11. B.B. Adeleke, K.Y. Choo and J.K.S. Wan, J. Chem. Phys. 62, 3822 (1975).

    Article  CAS  Google Scholar 

  12. S.K. Wong, D. A. Hutchinson and J.K.S. Wan, J. Chem. Phys. 58, 985 (1973).

    Article  CAS  Google Scholar 

  13. P.W. Atkins and G.T. Evans, Mol. Phys. 27, 1633 (1974).

    Article  CAS  Google Scholar 

  14. F.J. Adrian, J. Chem. Phys. 61, 4875 (1975).

    Article  Google Scholar 

  15. J. Bargon and K. G. Seifert, Ber. Bunsenges. Phys. Chem. 78, 1180 (1974).

    CAS  Google Scholar 

  16. H.M. Vyas and J.K.S. Wan, Chem. Phys. Lett. 34, 470 (1975).

    Article  CAS  Google Scholar 

  17. F.J. Adrian, H.M. Vyas and J.K.S. Wan, J. Chem. Phys. 65, 1454 (1976).

    Article  CAS  Google Scholar 

  18. This derivation proceeds as described for Eq.(19) of reference 8c, except that here we omit the step setting and using Eq. (3).

    Google Scholar 

  19. F.J. Adrian, Chem. Phys. Lett. 26, 437 (1974).

    Article  CAS  Google Scholar 

  20. G.L. Closs and L.E. Closs, J. Am. Chem. Soc. 91, 4549 (1969); ibid. p. 4550.

    Article  CAS  Google Scholar 

  21. A.A. Lamola, M.L. Manion, H.D. Roth and G. Tollin, Proc. Nat. Acad. Sci. USA 72, 3265 (1975).

    Article  CAS  Google Scholar 

  22. E.M. Purcell and G.B. Field, Astrophys. J. 124, 542 (1956).

    Article  CAS  Google Scholar 

  23. F.J. Adrian, J. Chem. Phys. 53, 3374 (1970).

    Article  CAS  Google Scholar 

  24. F.J. Adrian, J. Chem. Phys. 54, 3912 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Adrian, F.J. (1977). Triplet Overhauser Mechanism of CIDNP. In: Muus, L.T., Atkins, P.W., McLauchlan, K.A., Pedersen, J.B. (eds) Chemically Induced Magnetic Polarization. Nato Advanced Study Institutes Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1265-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1265-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1267-6

  • Online ISBN: 978-94-010-1265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics