Skip to main content

Plant Water Relationships

  • Chapter
Principles of Plant Nutrition

Abstract

Life is intimately associated with water, and particularly with water in its liquid phase. Water is the form in which the H atom, an essential element of all organic molecules, is absorbed and then assimilated in the course of photosynthesis (page 147). About 500 g of water is absorbed by roots to produce 1g organic material and thus may be considered as a plant nutrient, in the same way as CO2 or NO 3 are also plant nutrients. The quantity of water required for the photosynthetic process, however, is small and amounts to only about 0.01% of the total quantity of water used by the plant. Most functions in which plant water is involved, are of a physical nature. Water is a solvent for many substances such as inorganic salts, sugars and organic anions. It is also the medium in which all biochemical reactions take place. Water molecules are adsorbed at the surfaces of particles forming hydration shells, which influence physical and chemical reactions. Water in liquid form allows the diffusion and mass flow of solutes, and for this reason is essential for the translocation and distribution of nutrients and metabolites throughout the entire plant. Water is also important in the vacuoles of plant cells as it generally exerts an intracellular pressure on the protoplasm and cell wall (so called turgor pressure) thus maintaining the rigidity of leaves, roots and other plant organs. These few examples indicate the overall importance of water in plant physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Reading

  • Addiscott, T. M. Potassium in relation to transport of carbohydrates and ions in plants, p. 205–220. In: Potassium Research and Agricultural Production, 10th Congr. Intern. Potash Institute, Bern 1974.

    Google Scholar 

  • Boyer, J. S. Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annu. Rev. Phytopathol. 33, 251–274, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, J. S. Water transport. Annu. Rev. Plant Physiol. 36, 473–516, 1985.

    Article  Google Scholar 

  • Canny, M. J. Transporting water in plants. Amer. Sci. 86, 152–159, 1998.

    Google Scholar 

  • Canny, M. J. Apoplastic water and solute movement: new rules for an old space. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 215–236, 1995.

    Article  CAS  Google Scholar 

  • Chrispeels, M. J., Crawford, N. M. and Aschroeder, J. I. Proteins for transport of water and mineral nutrients across the membranes of plant cells. The Plant Cell 11, 661–675, 1999.

    PubMed  CAS  Google Scholar 

  • Clarkson, D. T. Roots and the delivery of solutes and water to the xylem. Phil. Trans. Roy. Soc. London Ser. B 341, 5–17, 1993.

    Article  Google Scholar 

  • Dainty, J. Water relations of plant cells, p. 12–35. In: Transport in Plants, edited by Lüttge, U. and Pitman, M. Encyclopedia of Plant Physiology, New series, Vol. 2, Springer Verlag Berlin 1976.

    Chapter  Google Scholar 

  • De Boer, A. H. Potassium translocation into the root xylem. Plant Biol. 1, 36–45, 1999.

    Article  Google Scholar 

  • Ehlers, W. (G) Transpiration coefficients of crops under field conditions. Pflanzenbauwissenschaften 1, 97–108, 1997.

    Google Scholar 

  • Flowers, T. J. Physiology of halophytes. Plant and Soil 89, 41–56, 1985.

    Article  CAS  Google Scholar 

  • Flowers, T. J. and Yeo, A. R. Ion relations in plants under drought and salinity. Austr. J. Plant Physiol. 13, 75–91, 1986.

    Article  CAS  Google Scholar 

  • Flowers, T. J. and Läuchli, A. Sodium versus potassium substitution and compartmentation, p. 651–681. In: Encyclopedia of Plant Physiology New Series. Vol 15B., edited by Läuchli, A. and Bieleski, R. L., Springer Verlag, Berlin 1983.

    Google Scholar 

  • Greenway, H. and Munns, R. Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31, 149–190, 1980.

    Article  CAS  Google Scholar 

  • Hanks, R. J. and Rasmussen, V. P. Predicting crop production as related to plant water stress. Adv. Agron. 35, 193–215, 1982.

    Article  Google Scholar 

  • Hanson, A. D. and Hitz, W. D. Metabolic responses of mesophyte to plant water deficits. Annu. Rev. Plant Physiol. 33, 163–203, 1982.

    Article  CAS  Google Scholar 

  • Hsiao, T. C. Plant responses to water stress. Annu. Rev. Plant Physiol. 24, 519–570, 1973.

    Article  CAS  Google Scholar 

  • Hsiao, T. C. and Acevedo, E. Plant responses to water deficits, water use efficiency, and drought resistance. Agricult. Meteorol. 14, 59–84, 1974.

    Article  Google Scholar 

  • Jungk, A. and Ciaassen, N. Ion diffusion in the soil-root system. Adv. Agron. 61, 53–110, 1997.

    Article  CAS  Google Scholar 

  • Kinzel, H. (G) Plant Ecology and Mineral Metabolism. Verlag Eugen Ulmer, Stuttgart 1982.

    Google Scholar 

  • Kramer, P. J. and Boyer, J. S. Water relations of plants and soils. Acad. Press, San Diego, 1995.

    Google Scholar 

  • Kuntze, H., Roeschmann, G., Schwerdtfeger, G. (G) Soil Science. 5th Edition, Verlag Eugen Ulmer Stuttgart, 1994.

    Google Scholar 

  • Koyro H.-W. and Huchzermeyer, B. Salt and drought stress effects on metabolic regulation in maize, p. 843–878. In: Handbook of Plant and Crop Stress, edited by Pessarakli, M., Marcel Dekker, New York 1999.

    Google Scholar 

  • Läuchli, A. Potassium interactions in crop plants. In: Frontiers in Potassium Nutrition. New Perspectives on the Effect of Potassium on Physiology of Plants, p. 71–76. edited by Oosterhuis, D. M. and Berkowitz, G. A. Potash and Phosphate Institute, Norcross, Georgia USA, 1999

    Google Scholar 

  • Lieth, H., Moschenko, M., Lohmann, M., Koyro, H.-W. and Hamdy, A. Halophyte uses in different climates I. Progress in Biometerology, Vol. 13. Backhuys Publ., Leiden, 1999.

    Google Scholar 

  • Maathuis, F. J. M. and Amtmann, A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133, 1999.

    Article  CAS  Google Scholar 

  • Marschner, H. Mineral Nutrition of Higher Plants. 2nd Edition Acad. Press, London 1995.

    Google Scholar 

  • Marschner, H., Kirkby, E. A. and Engels, C. Importance of cycling and recycling of mineral nutrients within plants for growth and development. Bot. Acta 110, 265–273, 1997.

    CAS  Google Scholar 

  • McIntyre, G. I. The role of nitrate in the osmotic and nutritional control of plant development. Aust. J. Plant Physiol. 24, 103–118, 1997.

    Article  CAS  Google Scholar 

  • Morgan, J. M. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35, 299–319, 1984.

    Article  Google Scholar 

  • Milburn, J. A. Water flow in plants. Longman, London and New York, 1979.

    Google Scholar 

  • Munns, R. Physiological processes limiting plant growth in saline soils. Some dogmas and hypotheses. Plant Cell. Environ. 16, 15–24, 1993.

    Article  CAS  Google Scholar 

  • Neumann, E. J. Root and soil water relations, p. 362–440. In: The Plant Root and its Environment, edited by Carson, E. W. University Press of Virginia, Charlottesville 1974.

    Google Scholar 

  • Nobel, P. Physicochemical and environmental plant physiology. Acad. Press, San Diego, 1991.

    Google Scholar 

  • Passioura, J. B. and Fry, S. C. Turgor and cell expansion: beyond the Lokhardt equation. Aust. J. Plant Physiol. 19, 565–576, 1992.

    Article  Google Scholar 

  • Pate, J. S. Transport and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. 31, 313–340, 1980.

    Article  CAS  Google Scholar 

  • Schroeder, J. I., Ward, J. M. and Gassmann, W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: Biophysical implications for K+ uptake. Annu. Rev. Biophys. Biomol. Struct. 23, 441–471, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schurr, U. Dynamics of nutrient transport from the root to the shoot. Progress in Botany 60, 234–253, 1999.

    Article  CAS  Google Scholar 

  • Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., de Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R. and Montesinos, C. A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50, 1023–1036, 1999.

    CAS  Google Scholar 

  • Slatyer, R. O. Plant-Water Relationships. Academic Press, London, New York 1967.

    Google Scholar 

  • Smith, J. A. C. and Griffiths, H. Water deficits. Plant responses from cell to community. BIOS Scientific, Oxford, 1993.

    Google Scholar 

  • Smith, J. A. C. Ion transport and the transpiration stream. Bot. Acta 104, 416–421, 1991.

    CAS  Google Scholar 

  • Somero, G. N., Osmond, C. B. and Bolis, C. L. Water and Life. Springer Verlag Berlin, Heidelberg, 1992.

    Book  Google Scholar 

  • Stanhill, G. Water use efficiency. Adv. Agron. 39, 53–85, 1986

    Article  Google Scholar 

  • Steudle, E. and Peterson, C. A. How does water get through roots? J. Exp. Bot. 49, 775–788, 1998.

    CAS  Google Scholar 

  • Talbott, L. D. and Zeiger, E. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329–337, 1998.

    Google Scholar 

  • Tyree, M. T. and Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. 40, 19–38, 1989.

    Article  Google Scholar 

  • Yeo, A. Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 49, 915–929, 1998.

    CAS  Google Scholar 

  • Zeiger, E., Farqhuar, G. and Gowan, I. Stomatal Function. Stanford University Press, Stanford, CA, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. (2001). Plant Water Relationships. In: Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. (eds) Principles of Plant Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1009-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1009-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0008-9

  • Online ISBN: 978-94-010-1009-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics