Mycophenolate Mofetil and Azathioprine

  • John D. Pirsch
  • Elias David-Neto


Antimetabolites have been used as adjunctive immunosuppression for renal transplantation since the early 1960s. Azathioprine was one of the first antimetabolites to be used in chronic immunosuppression protocols having been shown to be effective in renal transplantation in dogs [1] and subsequently in humans [2]. Azathioprine remained a mainstay of chronic immunosuppression protocols until the mid-1990s when it was shown in double-blind randomized trials that mycophenolate mofetil (MMF) had better efficacy for the prevention of acute rejection following renal transplantation [3–5]. Although MMF has replaced azathioprine in chronic immunosuppression protocols, many centers still use azathioprine, particularly in low-risk patients.


Acute Rejection Mycophenolate Mofetil Renal Transplant Recipient Transplant Proc Rejection Episode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calne RY, Alexandre GPJ, Murray JE. A study of drugs in prolonging survival of homologous renal transplants in dogs. Ann NY Acad Sci 1962;99:743–761.PubMedCrossRefGoogle Scholar
  2. 2.
    Murray JE, Merrill JP, Harrson JH, et al. Prolonged survival of human-kidney homografts by immunosuppressive drug therapy. N Engl J Med 1963;268:1315–1323.PubMedCrossRefGoogle Scholar
  3. 3.
    Sollinger HW for the US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995;60:225–232.CrossRefGoogle Scholar
  4. 4.
    European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet 1995;345:1321–1325.Google Scholar
  5. 5.
    The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for prevention of acute rejection in cadaveric renal transplantation. Transplantation 1996;61:1029–1037.CrossRefGoogle Scholar
  6. 6.
    Elion GB, Hitchings GH, Vanderwerff J. Antagonists of nucleic acid derivatives. J Biol Chem 1951;192:505.PubMedGoogle Scholar
  7. 7.
    Schwartz R, Dameshek H. The effects of 6-mercaptopurine on homografts reactions. J Ciin Invest 1960;39:952.CrossRefGoogle Scholar
  8. 8.
    Elion GB, Callahan S, Bibier S, Hitchings GH, Rundles RW. A summary of investigations with 6-(1′-methyl-4′nitro-5′imidazolyl)thiopurine. Cancer Chemother 1961;14:93.Google Scholar
  9. 9.
    Merrill JP, Murray JE, Takacs FJ, Hager ED, Wilson RE, Dammin GJ. Successful transplantation of kidney from a human cadaver. J Am Med Assoc 1963; 185:347.CrossRefGoogle Scholar
  10. 10.
    el-Gamel A, Evans C, Keevil B, et al. Effect of allopurinol on the metabolism of azathioprine in heart transplant patients. Transplant Proc 1998;30:1127–1129.PubMedCrossRefGoogle Scholar
  11. 11.
    Chocair PR, Duley JA, Cameron JS, et al. Does low-dose allopurinol, with azathioprine, cyclosporin and prednisolone, improve renal transplant immunosuppression? Adv Exp Med Biol 1994;370:205–208.PubMedGoogle Scholar
  12. 12.
    Dervieux T, Medard Y, Baudouin V, et al. Thiopurine methyltransferase activity and its relationship to the occurrence of rejection episodes in paediatric renal transplant recipients treated with azathioprine. Br J Clin Pharmacol 1999;48:793–800.PubMedCrossRefGoogle Scholar
  13. 13.
    Lennard L, Singleton HJ. High-performance liquid chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. J Chromatogr 1992;583:83–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Chocair PR, Duley JA, Simmonds HA, Cameron JS. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 1992;53:1051–1056.PubMedCrossRefGoogle Scholar
  15. 15.
    Escousse A, Guedon F, Mounie J, Rifle G, Mousson C, D’Athis P. 6-Mercaptopurine pharmacokinetics after use of azathioprine in renal transplant recipients with intermediate or high thiopurine methyl transferase activity phenotype. J Pharm Pharmacol 1998;50:1261–1266.PubMedCrossRefGoogle Scholar
  16. 16.
    Chocair PR, Duley JA, Sabbaga E, Arap S, Simmonds HA, Cameron JS. Fast and slow methylators: do racial differences influence risk of allograft rejection? Q J Med 1993;86:359–363.PubMedGoogle Scholar
  17. 17.
    Amenabar JJ, Gomez-Ullate P, Garcia-Lopez FJ, Aurrecoechea B, Garcia-Erauzkin G, Lampreabe I. A randomized trial comparing cyclosporine and steroids with cyclosporine, azathioprine, and steroids in cadaveric renal transplantation. Transplantation 1998;65:653–661.PubMedCrossRefGoogle Scholar
  18. 18.
    Arber N, Zajicek G, Nordenberg J, Sidi Y. Azathioprine treatment increases hepatocyte turnover. Gastroenterology 1991;101:1083–1086.PubMedGoogle Scholar
  19. 19.
    Pol S, Cavalcanti R, Carnot F, et al. Azathioprine hepatitis in kidney transplant recipients. A predisposing role of chronic viral hepatitis. Transplantation 1996;61:1774–1776.PubMedCrossRefGoogle Scholar
  20. 20.
    Haboubi NY, Ali HH, Whitwell HL, Ackrill P. Role of endothelial cell injury in the spectrum of azathioprine-induced liver disease after renal transplant: light microscopy and ultrastructural observations. Am J Gastroenterol 1988;83:256–261.PubMedGoogle Scholar
  21. 21.
    Farge D, Parfrey PS, Forbes RD, Dandavino R, Guttmann RD. Reduction of azathioprine in renal transplant patients with chronic hepatitis. Transplantation 1986;41:55–59.PubMedCrossRefGoogle Scholar
  22. 22.
    David-Neto E, da Fonseca JA, de Paula FJ, Nahas WC, Sabbaga E, Ianhez LE. Is azathioprine harmful to chronic viral hepatitis in renal transplantation? A long-term study on azathioprine withdrawal. Transplant Proc 1999;31:1149–1150.PubMedCrossRefGoogle Scholar
  23. 23.
    Opelz G. Evaluation of immunosuppressive induction regimens in renal transplantation. Collaborative Transplant Study. Transplant Proc 1998;30:4029–4030.PubMedCrossRefGoogle Scholar
  24. 24.
    Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective randomized trial of FK506-based immunosuppression after renal transplantation. Transplantation 1995;59:485–490.PubMedGoogle Scholar
  25. 25.
    Opelz G. Influence of treatment with cyclosporine, azathioprine and steroids on chronic allograft failure. The Collaborative Transplant Study. Kidney Int Suppl 1995;52:S89–S92.PubMedGoogle Scholar
  26. 26.
    David-Neto E, Vilares S, Lando V, et al. Conversion from azathioprine/prednisone to azathioprine/cyclosporin promotes catch-up growth in pediatric renal allograft recipients. Clin Transplantation 1990;4:229.Google Scholar
  27. 27.
    David-Neto E, Nahas W, Sampaio EC, Ianhez LE, Sabbaga E, Arap S. CSA/AZA, in the absence of prednisone, improves linear growth in renal transplanted children. Transplant Int 1992;5(Suppl 1):S3.Google Scholar
  28. 28.
    David-Neto E, Ianhez LE, Nahas WC, Krasilcic S, Sabbaga E, Arap S. Do steroids matter in one-haplotype pediatric renal allograft recipients on cyclosporine/azathioprine? Transplant Proc 1994;26:95–96.PubMedGoogle Scholar
  29. 29.
    Birkeland SA, Larsen KE, Rohr N. Pediatric renal transplantation without steroids. Pediatr Nephrol 1998;12:87–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Fine RN. Growth hormone treatment of children with chronic renal insufficiency, end-stage renal disease and following renal transplantation-update 1997. J Pediatr Endocrinol Metab 1997;10:361–370.PubMedCrossRefGoogle Scholar
  31. 31.
    Kimmel SG, Zangari A, Acal L, Bilik R, Zaki A, Superina RA. Growth in children after liver transplantation. American Society of Transplant Surgeons 23rd Annual Scientific Meeting, May 14–16, 1997, Chicago, IL (abstract).Google Scholar
  32. 32.
    David-Neto E, Furusawa EA, Schwartzman BS, et al. Are steroids essential in pediatric living-related renal transplantation? A long-term single-center prospective study of CYA/AZA vs CYA/AZA/PRED. (Abstract). Pediatr Transplant 1998;2(Suppl 1):29.Google Scholar
  33. 33.
    Faull RJ, Bannister KM, Russ GR, Mathew TH, Clarkson AR. Excellent long-term survival of low-risk, first renal allografts using cyclosporine/azathioprine double therapy. Transplant Proc 1999;31:1155–1156.PubMedCrossRefGoogle Scholar
  34. 34.
    Khosla UM, Martin JE, Baker GM, Schroeder TJ, First MR. One-year, single-center cost analysis of mycophenolate mofetil versus azathioprine following cadaveric renal transplantation. Transplant Proc 1999;31:274–275.PubMedCrossRefGoogle Scholar
  35. 35.
    Sadek S, Vogt B, Beauregard-Zollinger L, Prestele H, Group PINS. Short-term combination of mycophenolate mofetil with cyclosporine as a safe therapeutic option for renal transplant recipients. Transplant 2000 — First Joint Meeting of the American Society of Transplant Surgeons and American Society of Transplantation, May 13–17, 2000, Chicago, IL (abstract submitted).Google Scholar
  36. 36.
    David-Neto E, Gonçalves LF, Noronha IL, et al. One-year results of the Brazilian Trial on the addition of mycophenolate mofetil (CellCept) vs azathioprine to cyclosporin-A and steroids for the prevention of acute renal allograft rejection. XVIII International Congress of the Transplantation Society, August 27–September 1, 2000, Rome, Italy (abstract submitted).Google Scholar
  37. 37.
    Bartucci MR, Flemming-Brooks S, Koshla B, Knauss TC, Hricik DE, Schulak JA. Azathioprine monotherapy in HLA-identical live donor kidney transplant recipients. J Transpl Coord 1999;9:35–39.PubMedGoogle Scholar
  38. 38.
    Allison AC, Kowalski WJ, Muller CD, Eugui EM. Mechanisms of action of mycophenolic acid. Ann NY Acad Sci 1993;696:63–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Allison AC, Eugui EM. The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin Immunopathol 1993;14:353–3580.PubMedCrossRefGoogle Scholar
  40. 40.
    Sollinger HW, Eugui EM, Allison AC. RS-61443: mechanism of action, experimental and early clinical results. Clin Transplant 1991;5(Spec issue):523–526.Google Scholar
  41. 41.
    Allison AC, Eugui EM, Sollinger HW. Mycophenolate mofetil (RS-61443): mechanisms of action and effects in transplantation. Transplant Rev 1993;7:129–139.CrossRefGoogle Scholar
  42. 42.
    Gosio B. Ricerche bacteriologiche e chimiche sulle alterazioni del mais. Riv Igiene e Sanita Pubblica1896;7:825–868.Google Scholar
  43. 43.
    Alsberg CL, Black OF. Contribution to the study of maize deterioration: biochemical and toxocological investigations of Penicillium puberulum and Penicillium stoloniferum. US Dept Agr Plant Industry Bull 1913;270:7–48.Google Scholar
  44. 44.
    Farber EM, Pearlman D, Abel EA. An appraisal of current systemic chemotherapy for psoriasis. Arch Dermatol 1976;112:1679–1688.PubMedCrossRefGoogle Scholar
  45. 45.
    McDonald CJ. Chemotherapy of psoriasis. Int J Dermatol 1975;14:563–574.PubMedCrossRefGoogle Scholar
  46. 46.
    Allison AC, Eugui EM. Immunosuppressive and long-acting anti-inflammatory activity of mycophenolic acid and derivative, RS-61443. Br J Rheumatol 1991;30(Suppl 2):57–61.PubMedGoogle Scholar
  47. 47.
    Allison AC, Almquist SJ, Muller CD, Eugui EM. In vitro immunosuppressive effects of mycophenolic acid and an ester pro-drug, RS-61443. Transplant Proc 1991;23(2 Suppl 2):10–14.PubMedGoogle Scholar
  48. 48.
    Ransom JT. Mechanism of action of mycophenolate mofetil. Ther Drug Monit 1995;17:681–684.PubMedCrossRefGoogle Scholar
  49. 49.
    Eugui EM, Allison AC. Immunosuppressive activity of mycophenolate mofetil. Ann NY Acad Sci 1993;685:309–329.PubMedCrossRefGoogle Scholar
  50. 50.
    Hager PW, Collart FR, Huberman E, Mitchell BS. Recombinant human inosine monophosphate dehydrogenase type I and type II proteins. Purification and characterization of inhibitor binding. Biochem Pharmacol 1995;49:1323–1329.PubMedCrossRefGoogle Scholar
  51. 51.
    Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev 1993;136:5–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Eugui EM, Almquist SJ, Muller CD, Allison AC. Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: role of deoxyguanosine nucleotide depletion. Scan J Immunol 1991;33:161–173.CrossRefGoogle Scholar
  53. 53.
    Eugui EM, Mirkovich A, Allison AC. Lymphocyte-selective antiproliferative and immunosuppressive effects of mycophenolic acid in mice. Scand J Immunol 1991;33:175–183.PubMedCrossRefGoogle Scholar
  54. 54.
    Allison AC, Kowalski WJ, Muller CJ, Waters RV, Eugui EM. Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules. Transplant Proc 1993;25(3 Suppl 2):67–70.PubMedGoogle Scholar
  55. 55.
    Blaheta RA, Leckel K, Wittig B, Zenker D, Oppermann E, Harder S, et al. Inhibition of endothelial receptor expression and of T cell ligand activity by mycophenolate mofetil. Transpl Immunol 1998;6:251–259.PubMedCrossRefGoogle Scholar
  56. 56.
    Morris RE, Hoyt EG, Eugui EM, Allison AC. Prolongation of rat heart allograft survival by RS-61443. Surg Forum 1989;40:337–338.Google Scholar
  57. 57.
    Morris RE, Hoyt EG, Murphy MP, Eugui EM, Allison AC. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T-and B-cell purine synthesis. Transplant Proc 1990;22:1659–1662.PubMedGoogle Scholar
  58. 58.
    Platz KP, Sollinger HW, Hullett DA, Eckhoff DE, Eugui EM, Allison AC. RS-61443 —a new, potent immunosuppressive agent. Transplantation 1991;51:27–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Platz KP, Bechstein WO, Eckhoff DE, Suzuki Y, Sollinger HW. RS-61443 reverses acute allograft rejection in dogs. Surgery 1991;110:736–741.PubMedGoogle Scholar
  60. 60.
    D’Alessandro AM, Rankin M, McVey J, Hafez GR, Sollinger HW, Kalayoglu M, et al. Prolongation of canine intestinal allograft survival with RS-61443, cyclosporine, and prednisone. Transplant Proc 1993;25:1207–1209.PubMedGoogle Scholar
  61. 61.
    Bechstein WO, Schilling M, Steele DM, Hullett DA, Sollinger HW. RS-61443/cyclosporine combination therapy prolongs canine liver allograft survival. Transplant Proc 1993;25(1 Pt 1):702–703.PubMedGoogle Scholar
  62. 62.
    O’Hair DP, McManus RP, Komorowski R. Inhibition of chronic vascular rejection in primate cardiac xenografts using mycophenolate mofetil. Ann Thorac Surg 1994;58:1311–1315.PubMedCrossRefGoogle Scholar
  63. 63.
    Fujino Y, Kawamura T, Hullett DA, Sollinger HW. Evaluation of cyclosporine, mycophenolate mofetil, and brequinar sodium combination therapy on hamster-to-rat cardiac xenotransplantation. Transplantation 1994;57:41–46.PubMedCrossRefGoogle Scholar
  64. 64.
    Murase N, Starzl TE, Demetris AJ, Valdivia L, Tanabe M, Cramer D, et al. Hamster-to-rat heart and liver xenotransplantation with FK506 plus antiproliferative drugs. Transplantation 1993;55:701–708.PubMedCrossRefGoogle Scholar
  65. 65.
    Yatscoff RW, Wang S, Keenan R, Chackowsky P, Koshal A. Efficacy of rapamycin, RS-61443, and cyclophosphamide in the prolongation of survival of discordant pig-to-rabbit cardiac xenografts. Transplant Proc 1994;26:1271–1273.PubMedGoogle Scholar
  66. 66.
    Hao L, Lafferty KJ, Allison AC, Eugui EM. RS-61443 allows islet allografting and specific tolerance induction in adult mice. Transplant Proc 1990;22:876–879.PubMedGoogle Scholar
  67. 67.
    Wennberg L, Wallgren AC, Karlsson-Parra A, Kozlowski T, Sundberg B, Tibell A, et al. Efficacy of various immunosuppressive drugs in preventing pig-to-rat islet xenograft rejection. Transplant Proc 1995;27:266–267.PubMedGoogle Scholar
  68. 68.
    Beger C, Menger MD. RS-61443 prevents microvascular rejection of pancreatic islet xenografts. Transplantation 1997;63:577–582.PubMedCrossRefGoogle Scholar
  69. 69.
    Wennberg L, Groth CG, Tibell A, Zhu S, Liu J, Rafael E, et al. Triple drug treatment with cyclosporine, leflunomide and mycophenolate mofetil prevents rejection of pig islets transplanted into rats and primates. Transplant Proc 1997;29:2498.PubMedCrossRefGoogle Scholar
  70. 70.
    Song Z, Wennberg L, Bennet W, Sundberg B, Groth CG, Korsgren O. FK506 prevents islet xenograft rejection: a study in the pig-to-rat model. Transplant Proc 1999;31:981.PubMedCrossRefGoogle Scholar
  71. 71.
    Ziswiler R, Steinmann-Niggli K, Kappeler A, Daniel C, Marti HP. Mycophenolic acid: a new approach to the therapy of experimental mesangial proliferative glomerulonephritis. J Am Soc Nephrol 1998;9:2055–2066.PubMedGoogle Scholar
  72. 72.
    Penny MJ, Boyd RA, Hall BM. Mycophenolate mofetil prevents the induction of active Heymann nephritis: association with Th2 cytokine inhibition. J Am Soc Nephrol 1998;9:2272–2282.PubMedGoogle Scholar
  73. 73.
    Jonsson CA, Svensson L, Carlsten H. Beneficial effect of the inosine monophosphate dehydrogenase inhibitor mycophenolate mofetil on survival and severity of glomerulonephritis in systemic lupus erythematosus (SLE)-prone MRUpr/lpr mice. Clin Exp Immunol 1999;116:534–541.PubMedCrossRefGoogle Scholar
  74. 74.
    van Bruggen MCJ, Walgreen B, Rijke TPM, Berden JHM. Attenuation of murine lupus nephritis by mycophenolate mofetil. J Am Soc Nephrol 1998;9:1407–1415.PubMedGoogle Scholar
  75. 75.
    Remuzzi G, Zoja C, Gagliardini E, Corna D, Abbate M, Benigni A. Combining an antiproteinuric approach with mycophenolate mofetil fully suppresses progressive nephropathy of experimental animals. J Am Soc Nephrol 1999;10:1542–1549.PubMedGoogle Scholar
  76. 76.
    Bullingham RES, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998;34:429–455.PubMedCrossRefGoogle Scholar
  77. 77.
    Zucker K, Rosen A, Tsaroucha A, de Faria L, Roth D, Ciancio G, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patientsreceiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997;5:225–232.PubMedCrossRefGoogle Scholar
  78. 78.
    Gregoor PJ, de Sevaux RG, Hene RJ, Hesse CJ, Hilbrands LB, Vos P, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation 1999;68:1603–1606.PubMedCrossRefGoogle Scholar
  79. 79.
    Sollinger HW, Deierhoi MH, Beizer FO, Diethelm AG, Kauffman RS. RS-61443 — a phase I clinical trial and pilot rescue study. Transplantation 1992;53:428–432.PubMedCrossRefGoogle Scholar
  80. 80.
    Sollinger HW, Beizer FO, Deierhoi MH, Diethelm AG, Gonwa TA, Kauffman RS, et al. RS-61443 (mycophenolate mofetil). A multicenter study for refractory kidney transplant rejection. Ann Surg 1992;216:513–519.PubMedCrossRefGoogle Scholar
  81. 81.
    US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil in cadaveric renal transplantation. Am J Kidney Dis 1999;34:296–303.CrossRefGoogle Scholar
  82. 82.
    European Mycophenolate Mofetil Cooperative Study Group. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. Transplantation 1999;68:391–396.CrossRefGoogle Scholar
  83. 83.
    Mathew TH for the Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years. Transplantation 1998;65:1450–1454.PubMedCrossRefGoogle Scholar
  84. 84.
    The Mycophenolate Mofetil Renal Refractory Rejection Study Group. Mycophenolate mofetil for the treatment of refractory, acute, cellular renal transplant rejection. Transplantation 1996;61:722–729.CrossRefGoogle Scholar
  85. 85.
    The Mycophenolate Mofetil Acute Renal Rejection Study Group. Mycophenolate mofetil for the treatment of a first acute renal allograft rejection. Transplantation 1998;65:235–241.Google Scholar
  86. 86.
    Forsythe J for the European Multicentre Tacrolimus/MMF Study Group. Tacrolimus and mycophenolate mofetil in cadaveric renal transplant recipients. Transplant Proc 1999;31 (Suppl 7A):69S–71S.Google Scholar
  87. 87.
    Miller J, Mendez R, Pirsch JD, Jensik SC for the FK506/MMF Dose-Ranging Kidney Transplant Study Group. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. Transplantation 2000;69:875–880.PubMedCrossRefGoogle Scholar
  88. 88.
    Shapiro R, Jordan ML, Scantlebury VP, Vivas C, Marsh JW, McCauley J, et al. A prospective, randomized trial of tacrolimus/prednisone versus tacrolimus/pred-nisone/mycophenolate mofetil in renal transplant recipients. Transplantation 1999;67:411–415.PubMedCrossRefGoogle Scholar
  89. 89.
    Steroid Withdrawal Study Group. Prednisone withdrawal in kidney transplant recipients on cyclosporine and mycophenolate mofetil — a prospective randomized study. Transplantation 1999;68:1865–1874.CrossRefGoogle Scholar
  90. 90.
    Azuma H, Binder J, Heemann U, Schmid C, Tullius SG, Tilney NL. Effects of RS61443 on functional and morphological changes in chronically rejecting rat kidney allografts. Transplantation 1995;59:460–466.PubMedGoogle Scholar
  91. 91.
    Raisanen-Sokolowski A, Vuoristo P, Myllarniemi M, Yilmaz S, Kallio E, Hayry P. Mycophenolate mofetil (MMF, RS-61443) inhibits inflammation and smooth muscle cell proliferation in rat aortic allografts. Transpl Immunol 1995;3:342–351.PubMedCrossRefGoogle Scholar
  92. 92.
    Steele DM, Bechstein WO, Kowalski J, et al. RS-61443 inhibits intimal hyperplasia in aortic allografts. Surg Forum 1992;43:383–385.Google Scholar
  93. 93.
    Weir MR, Anderson L, Fink JC, Gabregiorgish K, Schweitzer EJ, Hoehn-Saric E, et al. A novel approach to the treatment of chronic allograft nephropathy. Transplantation 1997;64:1706–1710.PubMedCrossRefGoogle Scholar
  94. 94.
    Shaw LM, Korecka M, Aradhye S, Grossman R, Barker C, Naji A, et al. Scientific principles for mycophenolic acid therapeutic drug monitoring. Transplant Proc 1998;30:2234–2236.PubMedCrossRefGoogle Scholar
  95. 95.
    Nicholls AJ. Opportunities for therapeutic monitoring of mycophenolate mofetil dose in renal transplantation suggested by the pharmacokinetic/pharmacodynamic relationship for mycophenolic acid and suppression of rejection. Clin Biochem 1998;31:329–333.PubMedCrossRefGoogle Scholar
  96. 96.
    van Gelder T, Hilbrands LB, Vanrenterghem Y, Weimar W, de Fijter JW, Squifflet JP, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999;68:261–266.PubMedCrossRefGoogle Scholar
  97. 97.
    Renlund DG, Gopinathan SJ, Kfoury AG, Taylor DO. Mycophenolate mofetil (MMF) in heart transplantation: rejection prevention and treatment. Clin Transplant 1996;10:136–139.PubMedGoogle Scholar
  98. 98.
    Kirklin JK, Bourge RC, Naftel DC, Morrow WR, Deierhoi MH, Kauffman RS, et al. Treatment of recurrent heart rejection with mycophenolate mofetil (RS-61443): initial clinical experience. J Heart Lung Transplant 1994;13:444–450.PubMedGoogle Scholar
  99. 99.
    Ensley RD, Bristow MR, Olsen SL, Taylor DO, Hammond EH, O’Connell JB, et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation 1993;56:75–82.PubMedCrossRefGoogle Scholar
  100. 100.
    Kobashigawa J, Miller L, Renlund D, Mentzer R, Alderman E, Bourge R, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Transplantation 1998;66:507–515.PubMedCrossRefGoogle Scholar
  101. 101.
    Klintmalm GB, Ascher NL, Busuttil RW, Deierhoi M, Gonwa TA, Kauffman R, et al. RS-61443 for treatment-resistant human liver rejection. Transplant Proc 1993;25:697.PubMedGoogle Scholar
  102. 102.
    Platz KP, Mueller AR, Neuhaus R, Keck HH, Lobeck H, Neuhaus P. FK506 and mycofenolate mofetil rescue for acute steroid-resistant and chronic rejection after liver transplantation. Transplant Proc 1997;29:2872–2874.PubMedCrossRefGoogle Scholar
  103. 103.
    Hebert MF, Ascher NL, Lake JR, Emond J, Nikolai B, Unna TJ, et al. Four-year follow-up of mycophenolate mofetil for graft rescue in liver allograft recipients. Transplantation 1999; 67:707–712.PubMedCrossRefGoogle Scholar
  104. 104.
    Stegall MD, Wachs ME, Everson G, Steinberg T, Bilir B, Shrestha R, et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. Transplantation 1997;64:1755–1760.PubMedCrossRefGoogle Scholar
  105. 105.
    Fisher RA, Ham JM, Marcos A, Shiffman ML, Luketic VA, Kimball PM, et al. A prospective randomized trial of mycophenolate mofetil with Neoral or tacrolimus after orthotopic liver transplantation. Transplantation 1998;66:1616–1621.PubMedCrossRefGoogle Scholar
  106. 106.
    Jain AB, Hamad I, Rakela J, Dodson F, Kramer D, Demetris J, et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone, and mycophenolate mofetil in primary adult liver transplant recipients. Transplantation 1998;66:1395–1398.PubMedCrossRefGoogle Scholar
  107. 107.
    Eckhoff DE, McGuire BM, Frenette LR, Contreras JL, Hudson SL, Bynon JS. Tacrolimus (FK506) and mycophenolate mofetil combination therapy versus tacrolimus in adult liver transplantation. Transplantation 1998;65:180–187.PubMedCrossRefGoogle Scholar
  108. 108.
    Mamelok RD, Kalayoglu M, Klintmalm G, Langnas AN, Levy GA, McDiarmid SV, et al. A randomized, double-blind comparative study of mycophenolate mofetil (MMF) and azathioprine (AZA), in combination with cyclosporine and corticosteroids in liver transplant recipients. American Association for the Study of Liver Diseases 50th Annual Meeting, November 5–9, 1999, Dallas, TX (abstract).Google Scholar
  109. 109.
    Papatheodoridis GV, O’Beirne J, Mistry P, Davidson B, Rolles K, Burroughs AK. Mycophenolate mofetil monotherapy in stable liver transplant patients with cyclosporine-induced renal impairment: a preliminary report. Transplantation 1999;68:155–157.PubMedCrossRefGoogle Scholar
  110. 110.
    Herrero JI, Quiroga J, Sangro B, Girala M, Gomez-Manero N, Pardo F, et al. Conversion of liver transplant recipients on cyclosporine with renal impairment to mycophenolate mofetil. Liver Transpl Surg 1999;5:414–420.PubMedCrossRefGoogle Scholar
  111. 111.
    Stegall MD, Simon M, Wachs ME, Chan L, Nolan C, Kam I. Mycophenolate mofetil decreases rejection in simultaneous pancreas-kidney transplantation when combined with tacrolimus or cyclosporine. Transplantation 1997;64:1695–1700.PubMedCrossRefGoogle Scholar
  112. 112.
    Gruessner RWG, Sutherland DER, Drangstveit MB, Wrenshall L, Humar A, Gruessner AC. Mycophenolate mofetil in pancreas transplantation. Transplantation 1998;66:318–323.PubMedCrossRefGoogle Scholar
  113. 113.
    Odorico JS, Pirsch JD, Knechtle SJ, D’Alessandro AM, Sollinger HW. A study comparing mycophenolate mofetil to azathioprine in simultaneous pancreas-kidney transplantation. Transplantation 1998;66:1751–1759.PubMedCrossRefGoogle Scholar
  114. 114.
    Kaufman DB, Leventhal JR, Stuart J, Abecassis MM, Fryer JP, Stuart FP. Mycophenolate mofetil and tacrolimus as primary maintenance immunosuppression in simultaneous pancreas-kidney transplantation. Transplantation 1999; 67:586–593.PubMedCrossRefGoogle Scholar
  115. 115.
    Ross DJ, Waters PF, Levine M, Kramer M, Ruzevich S, Kass RM. Mycophenolate mofetil versus azathioprine immunosuppressive regimens after lung transplantation: preliminary experience. J Heart Lung Transplant 1998;17:768–774.PubMedGoogle Scholar
  116. 116.
    O’Hair DP, Cantu E, McGregor C, Jorgensen B, Gerow-Smith R, Galantowicz ME, et al. Preliminary experience with mycophenolate mofetil used after lung transplantation. J Heart Lung Transplant 1998;17:864–868.PubMedGoogle Scholar
  117. 117.
    Zuckermann A, Klepetko W, Birsan T, Taghavi S, Artemiou 0, Wisser W, et al. Comparison between mycophenolate mofetil-and azathioprine-based immunosuppressions in clinical lung transplantation. J Heart Lung Transplant 1999; 18:432–440.PubMedCrossRefGoogle Scholar
  118. 118.
    Reichenspurner H, Kur F, Treede H, Meiser BM, Deutsch 0, Welz A, et al. Optimization of the immunosuppressive protocol after lung transplantation. Transplantation 1999;68:67–71.PubMedCrossRefGoogle Scholar
  119. 119.
    Tzakis AG, Weppler D, Khan MF, Koutouby R, Romero R, Viciana AL, et al. Mycophenolate mofetil as primary and rescue therapy in intestinal transplantation. Transplant Proc 1998;30:2677–2679.PubMedCrossRefGoogle Scholar
  120. 120.
    Nousari HC, Lynch W, Anhalt GJ, Petri M. The effectiveness of mycophenolate mofetil in refractory pyoderma gangrenosum. Arch Dermatol 1998;134:1509–1511.PubMedCrossRefGoogle Scholar
  121. 121.
    Grundmann-Kollmann M, Körting HC, Behrens S, Kaskel P, Leiter U, Krahn G, et al. Mycophenolate mofetil: a new therapeutic option in the treatment of blistering autoimmune diseases. J Am Acad Dermatol 1999;40:957–960.PubMedCrossRefGoogle Scholar
  122. 122.
    Grundmann-Kollmann M, Kaskel P, Leiter U, Krahn G, Behrens S, Peter RU, et al. Treatment of pemphigus vulgaris and bullous pemphigoid with mycophenolate mofetil monotherapy. Arch Dermatol 1999;135:724–725.PubMedCrossRefGoogle Scholar
  123. 123.
    Enk AH, Knop J. Treatment of relapsing idiopathic nodular panniculitis (Pfeifer-Weber-Christian disease) with mycophenolate mofetil. J Am Acad Dermatol 1998;39:508–509.PubMedCrossRefGoogle Scholar
  124. 124.
    Hauser RA, Malek AR, Rosen R. Successful treatment of a patient with severe refractory myasthenia gravis using mycophenolate mofetil. Neurology 1998; 51:912–913.PubMedCrossRefGoogle Scholar
  125. 125.
    Daina E, Schieppati A, Remuzzi G. Mycophenolate mofetil for the treatment of Takayasu arteritis: report of three cases. Ann Intern Med 1999;130:422–426.PubMedGoogle Scholar
  126. 126.
    Kilmartin DJ, Forrester JV, Dick AD. Rescue therapy with mycophenolate mofetil in refractory uveitis. Lancet 1998;352:35–36.PubMedCrossRefGoogle Scholar
  127. 127.
    Glicklich D, Acharya A. Mycophenolate mofetil therapy for lupus nephritis refractory to intravenous cyclophosphamide. Am J Kidney Dis 1998;32:318–322.PubMedCrossRefGoogle Scholar
  128. 128.
    Dooley MA, Cosio FG, Nachman PH, Falkenhain ME, Hogan SL, Falk RJ, et al. Mycophenolate mofetil therapy in lupus nephritis: clinical observations. J Am Soc Nephrol 1999;10:833–839.PubMedGoogle Scholar
  129. 129.
    Neurath MF, Wanitschke R, Peters M, Krummenauer F, zum Buschenfelde KHM, Schlaak JF. Randomised trial of mycophenolate mofetil versus azathioprine for treatment of chronic active Crohn’s disease. Gut 1999;44:625–628.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • John D. Pirsch
  • Elias David-Neto

There are no affiliations available

Personalised recommendations