Skip to main content

Bayesian Classification of Geoeffective Solar Wind Structures

Real-time prediction of large geomagnetic storms

  • Chapter
Space Storms and Space Weather Hazards

Part of the book series: NATO Science Series ((NAII,volume 38))

Abstract

“Space weather” refers to the condition of geospace, a plasma-filled region primarily consisting of the magnetosphere and the ionosphere. Space weather is controlled by the solar wind impinging on the outer boundary of the magnetosphere. Sporadic eruptions at the Sun such as coronal mass ejections and solar flares produce solar wind structures that can cause disturbances in the Earth's plasma environment, leading to adverse consequences on technological systems. Perhaps the most damaging of such “space weather effects” are severe geomagnetic storms characterized by intense disturbances that are long-lasting and global in geographic scale, encompassing both highlatitude and low-latitude regions around the Earth. Large geomagnetic storms are relatively infrequent occurrences but can seriously disrupt space-borne as well as ground-based susceptible systems including communications networks and electric power grids. Storms are often accompanied by increased populations of high-energy charged particles in geospace that can jeopardize satellites and astronauts. Thus, accurate and timely prediction of large storms is one of the most important end products of space weather research. The present prediction methods in operation, which are based on solar observations, are inaccurate because the trajectories and the magnetic fields of the ejecta from solar eruptions cannot be accurately predicted. This article describes the basics of a new approach to making real-time predictions of large geomagnetic storms. The approach is based on recognizing, in real-time solar wind data, quantifiable physical features that allow one to estimate the duration and geoeffectiveness of the solar wind that has yet to arrive at the detector. The results of an extensive test of the method using the archival WIND data from 1995–1999 indicate that high prediction accuracy (≥; 70–80 %) and moderately long warning times (several hours to more than ten hours) are achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, J., H. Sauer, L. Frank, and P. Reift, Effects of the March 1989 Solar Activity, EOS, 70, 1479, 1989.

    Article  ADS  Google Scholar 

  • Birkeland, K., The Norwegian Aurora Polaris Expedition 1902-1903, A. Aschehoug, Christiania, 1908.

    Google Scholar 

  • Burton, R. K., R. L. McPherron, and C. T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204, 1975.

    Article  ADS  Google Scholar 

  • Cargill, P. J., J. Chen, D. S. Spicer, and S. T. Zalesak, Magnetohydrodynamic simulations of the motion of magnetic flux tube, J. Geophys. Res., 101, 855, 1996.

    Article  Google Scholar 

  • Cargill, P. J., J. Chen, D. S. Spicer, and S. T. Zalesak, Geometry of Interplanetary Magnetic Clouds, Geophys. Res. Lett., 22, 647, 1995.

    Article  ADS  Google Scholar 

  • Carrington, R. C, Description of a singular appearance seen on the Sun on September 1, 1859, Mon. Not. R. Astron. Soc, 20, 13, 1860.

    ADS  Google Scholar 

  • Chapman, S., The electric current-systems of magnetic storms, Terrest. Magn., 40, 349, 1935.

    Article  MATH  Google Scholar 

  • Chen, J., P. J. Cargill, and P. J. Palmadesso, Real-time identification and prediction of geoeffective solar wind structures, Geophys. Res. Lett., 23, 625, 1996.

    Article  ADS  Google Scholar 

  • Chen, J., P. J. Cargill, and P. J. Palmadesso, Predicting solar wind structures and their geoeffectiveness, J. Geophys. Res., 102, 14701, 1997.

    Article  ADS  Google Scholar 

  • Chen, J., S. P. Slinker, and P. J. Cargill, Prediction of geomagnetic storms associated with the halo CMEs of January and April 1997, in Proc. Workshop on Space Weather, ESA WPP-155, p. 403, 1999.

    Google Scholar 

  • Fenrich, F. R., and J. G. Luhmann, Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 25, 2999, 1998.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., and B. T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst <-100 nT), Planet. Space Sci., 35, 1101, 1987.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771, 1994.

    Article  ADS  Google Scholar 

  • Grimmett, G. R., and D. R. Stirzaker, Probability and Random Processes, p. 22, Clarendon Press, Oxford, UK, 1992.

    Google Scholar 

  • Hernandez, J. V., T. Tajima, and W. Horton, Neural net forecasting for geomagnetic activity, Geophys. Res. Lett., 20, 2707, 1993.

    Article  ADS  Google Scholar 

  • Hirshberg, J., and D. S. Colburn, Interplanetary field and geomagnetic variations-A unified view, Planet. Space Sci., 17, 1183, 1969.

    Article  ADS  Google Scholar 

  • Hodgson, R., On a curious appearance seen in the Sun, Mon. Not. R. Astron. Soc., 20, 16, 1860.

    Google Scholar 

  • Joselyn, J. A., Geomagnetic activity forecasting: The state of the art, Rev. Geophys., 33, 383, 1995.

    Article  ADS  Google Scholar 

  • Kappenman, J. G., and V. D. Albertson, Bracing for the geomagnetic storms, IEEE Spectrum, March, 1990.

    Google Scholar 

  • Kappenman, J. G., An introduction to power grid impacts and vulnerabilities from space weather, this volume, 2001.

    Google Scholar 

  • Lanzerotti, L. J., Geomagnetic induction effects in ground-based systems, Space Sei. Rev., 34, 347, 1983.

    ADS  Google Scholar 

  • Lanzerotti, L. J., Space weather effects on communications, this volume, 2001.

    Google Scholar 

  • Lundstedt, H., Neural networks and predictions of solar-terrestrial effects, Planet. Space Sci., 40, 457, 1992.

    Article  ADS  Google Scholar 

  • Neupert, W. M., and V. Pizzo, Solar coronal holes as sources of recurrent geomagnetic disturbances, J. Geophys. Res., 79, 3701, 1974.

    Article  ADS  Google Scholar 

  • O'Brien, T. P., and R. L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707, 2000.

    Article  ADS  Google Scholar 

  • Odstrcil, D., and V. J. Pizzo, Distortion of the interplanetary magnetic field by threedimensional propagation of coronal mass ejections in a structured solar wind, J. Geophys. Res., 104, 28225, 1999.

    Article  ADS  Google Scholar 

  • Perreault, P. and S.-I. Akasofu, A study of geomagnetic storms, Geophys. J. R. Astron. Soc, 54, 547, 1978.

    Article  ADS  Google Scholar 

  • Price, C. P., and D. Prichard, The non-linear response of the magnetosphere: 30 October 1978, Geophys. Res. Lett., 20, 771, 1993.

    Article  ADS  Google Scholar 

  • Rostoker, G., and C.-G. Falthammar, Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth's surface, J. Geophys. Res., 72, 5853, 1967.

    Article  ADS  Google Scholar 

  • Russell, C. T., R. L. McPherron, and R. K. Burton, On the cause of geomagnetic storms, J. Geophys. Res., 79, 1105, 1974.

    Article  ADS  Google Scholar 

  • Sharma, A. A., D. V. Vassiliadis, and K. Papadopoulos, Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis, Geophys. Res. Lett., 20, 335, 1993.

    Article  ADS  Google Scholar 

  • Sheeley, N. R., Jr., J. W. Harvey, and W. C. Feldman, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973-1976, Solar Phys., 49, 271, 1976.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., W. D. Gonzalez, Y. Kamide, and J. K. Arballo, editors, Magnetic Storms, Geophys. Monogr. 98, American Geophysical Union, Washington, DC, 1997.

    Book  Google Scholar 

  • Valdivia, J. A., S. A. Sharma, and K. Papadopoulos, Prediction of magnetic storms by nonlinear models, Geophys. Res. Lett., 23, 2899, 1996.

    Article  ADS  Google Scholar 

  • Vassiliadis, D., A. J. Klimas, D. N. Baker, and D. A. Roberts, A description of solar wind-magnetosphere coupling based on nonlinear filters, J. Geophys. Res., 100, 3495, 1995.

    Article  ADS  Google Scholar 

  • Wang, Y. M., and N. R. Sheeley, Jr., Solar wind speed and coronal flux-tube expansion, Astrophys. J., 355, 726, 1990.

    Article  ADS  Google Scholar 

  • Wintoft, P., and H. Lundstedt, Aneural network study of the mapping from solar magnetic fields to the daily average solar wind velocity, J. Geophys. Res., 104, 6729, 1999.

    Article  ADS  Google Scholar 

  • Wu, J.-G.I, and H. Lundstedt, Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks, Geophys. Res. Lett., 23, 319, 1996.

    Article  ADS  Google Scholar 

  • Wu, J.-G., H. Lundstedt, P. Wintoft, and T. R. Detman, Neural network models predicting the magnetospheric response to the 1997 January halo-CME event, Geophys. Res. Lett., 25, 3031, 1998.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, J. (2001). Bayesian Classification of Geoeffective Solar Wind Structures. In: Daglis, I.A. (eds) Space Storms and Space Weather Hazards. NATO Science Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0983-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0983-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0031-7

  • Online ISBN: 978-94-010-0983-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics