Skip to main content

Cosmic Ray and Radiation Belt Hazards for Space Missions

An introductory overview

  • Chapter
Space Storms and Space Weather Hazards

Part of the book series: NATO Science Series ((NAII,volume 38))

Abstract

Radiation hazard for space vehicles in near-Earth space is caused by a number of factors among which, besides the time of exposure to the radiation environment, the most significant are the orbital parameters of satellites, as well as the levels of solar and geomagnetic activities leading to radiation flux enhancement. The main components of the radiation environment, surrounding the Earth are: galactic cosmic rays, solar energetic particles and the radiation belts. All these components are subject to studies from the point of view of radiation impact on biological structures and spacecraft elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, J. (1985) Cosmic ray effects on microelectronics, in Naval Research Laboratory Memorandum Report, IV, Washington, USA, 1–118.

    Google Scholar 

  • Adams, J., Belyaev A.A., Kuznetsov, N.V. and Nymmik, R.A. (1996) Occurrence frequency of single upsets induced on synchronous orbit: model and calculations with TDRS-1 experiment, Nuclear Tracks & Radiation Measurements 22, 509–512.

    Google Scholar 

  • Akishin, A.I., Aleksandrov, A.P. (1983) Imitation testing space material science, in S.N. Vernov (ed), Space model (in Russian), Moscow State University Publishers, Moscow, 2, 9–28.

    Google Scholar 

  • AMS collaboration, Protons in near earth orbit, Phys. Letters, (2000), B472, 215–225.

    ADS  Google Scholar 

  • Aristova, I.N., Lyuagushin, V.I., Marin, B.V., Saraeva, M.A., Tel’tsov, M.V. (1991) Radiation environment on the orbital complex MIR during September-October 1989, Kosmicheskie Issledovaniya, 30, 794–798. (in Russian).

    ADS  Google Scholar 

  • Baker, D.N. (1996) Solar wind-magnetosphere drivers of space weather, J. of Atmospheric and Terrestrial Physics, 58, 1509–1526.

    Article  ADS  Google Scholar 

  • Bashkirov,V.F., Panasyuk,M.I., Teltsov, M.V. (1998) Trapped radiation dynamical model for low altitudes in the magnetosphere, Kosmicheskie issledovaniya (in Russian) 36, 359–368.

    Google Scholar 

  • Bashkirov, V.F., Kuznetsov N.V., Nymmik, R.A., (1999) An analysis of the SEU rate of microcircuits exposed by the various components of space radiation, Radiation. Measurements., 30 (1999), 427–433.

    Article  Google Scholar 

  • Beliaev, A.A., Lemaire. J., (1994) Evaluation of the INP radiation belt models, TREND Technical note A, ESTEC contract no. 9828/92/NL/FM.

    Google Scholar 

  • Beliaev, A.A., Lemaire J., (1996) Comparison between NASA and INP/MSU Radiation belt models, in J. Lemaire, D. Heynderickx, D. Baker, (eds.), Radiation belts: models and standards, Geophysical Monograph 97, 141–145.

    Google Scholar 

  • Bendel, W. L., Petersen E.L. (1983) Proton upsets in orbit, IEEE Trans, on Nuclear Science NS-30, 4481–4485.

    Google Scholar 

  • Binder, D., Smith, E.C., and Holman, A.B. (1975) satellite anomalies from galactic cosmic rays, IEEE Trans, on Nucl. Sci. 22, 2675–2680.

    Article  ADS  Google Scholar 

  • Blake, J.B., Friesen, L.M. (1977) A technique to determine the charge state of anomalous low energy cosmic rays, Proc. 15th Int. Cosmic Ray Conference., 2, 341–346.

    Google Scholar 

  • Bogomolov, A.V., Bucik, R., Dement’ev, A.V., Denisov, Yu.I., Ryumin, S.P. (1998) Energetic neutron and gamma ray spectra under the earth radiation belts according to fluxes observed onboard Coronas-I satellite, Salut-7-Cosmos-1686 orbital complex, Adv. Space res., 21, 1801–1804.

    Article  ADS  Google Scholar 

  • Brautigam, D.H., Gussenhoven, M.S., Mullen, E.G. (1992) Quasistatic model of outer zone electrons, IEEE Trans. Nucl.Sci., 39, 1797–1809.

    Article  ADS  Google Scholar 

  • Campbell, A., McDonald, P., Ray, K. (1992) Single event upset rates in space, IEEE Trans. on Nucl. Sci. 39, 1828–1835.

    Article  ADS  Google Scholar 

  • Desorger, L., Buhler, P., Zehnder, P., Daly, E., Adams, L. (1998) Outer radiation belt variations during 1995, Adv. Space Res., 22, 83–87.

    Article  ADS  Google Scholar 

  • Dmitriev A.V., Kalinin D.V., Kuznetsov S.N., Yushkov B.Yu. (1999) “Variations of the geomagnetic indices that control the radial diffusion of energetic particles in radiation belts”. Proceeding of Space Radiation Environment Workshop (SREW), Farnborough, England. 1-3 Nov, 1999 (in print).

    Google Scholar 

  • Feynman J., Spitale, G., Wang, J., and Gabriel, S. (1992) Interplanetary proton fluence model, J. Geophysical Research, 98, 1328–1342.

    Google Scholar 

  • GEANT (3.16, 3.21) Detector Description and Simulation Tool, CERN Geneva, Switzerland, 1994.

    Google Scholar 

  • GOST 25645.138-86, GOST 25645.139-86 (1986) The natural radiation belts, Standart Publishers (in Russian).

    Google Scholar 

  • Grigorov, N.L. (1985) High energy electrons in the vicinity of the Earth, Nauka Academic Publishers, Moscow (in Russian).

    Google Scholar 

  • Grigorov, N.L., Kondrat’eva, M.I., Panasyuk, M.I., Tretyakova, Ch.A., Adams J., Blake, J.B., Schulz, M., Mewaldt, R.A., Tylka, A. (1991) An evidence for anomalous cosmic ray oxygen ions in the inner magnetosphere, Geophys. Res. Lett., 18, 1959–1962.

    Article  ADS  Google Scholar 

  • Gussenhoven, M.S., Mullen, E.G., Sperry, M., Kerns, K.J. (1992) The effect of the march 1991 storm on accumulated dose for selected orbits: CRRES dose models, IEEE Trans. Nucl. Sci., 39, 1765–1778.

    Article  ADS  Google Scholar 

  • Heynderickx, D., Kruglanski, Lemaire, J.F., Daly, E.L. (1996), in J. Lemaire, D. Heynderickx, D. Baker, (eds.), Radiation belts: models and standards, Geophysical Monograph, 97, Washington, 173–178.

    Chapter  Google Scholar 

  • Huston, S.L., Kuck, G.A., Pfitzer, K.A. (1996) Low-altitude trapped radiation model using TIROS/NOAA data, in J. Lemaire, D. Heynderickx, D. Baker (eds.), Radiation belts: models and standards, Geophysical Monograph, 97, Washington, 119–128.

    Chapter  Google Scholar 

  • Ilyin, V.D., Kuznetsov, S.N., Panasyuk, M.I., and Sosnovets, E.N. (1988) Nonadiabatic effects and limit of proton capture in the Earth’s radiation belts, Bull. Acad. Sci. USSR, Phys. Ser. (USA), 48, 134–137.

    Google Scholar 

  • Kuznetsov N.V., Lobakov A.P. (1999) An estimate of dose and single event effects on low-Earth orbit spacecraft. In: Space Radiation Environment Workshop & Workshop on Radiation Monitiring for the International Space Station. Book of Abstracts, 51.

    Google Scholar 

  • Kuznetsov, N.V., Nymmik, R.A. (1994) Background ion fluxes as a source of single events effects of microelectronics onboard spacecrafts, Kosmicheskie issledovaniya (in Russian) 32, 112–117.

    Google Scholar 

  • Kuznetsov, S.N., Myagkova, I.N., Yushkov, B.Yu. (1999) Connection between Energetic particle Fluxes at Geostationary orbit with solar wind parameters and with solar cosmic rays. Proceeding of Space Radiation Environment Workshop SREW), Farnborough, England. 1-3 Nov.1999 (in print).

    Google Scholar 

  • Lemaire, J., Johnstone, A.D., Heynderickx, D., Rodgers, D., Szita, S., Pierrard, V., Trapped Radiation Environment Model Development: TREND-2, Final Report, Aeronomica Acta A-393, 1995.

    Google Scholar 

  • Lockwood, J.A. (1973) Neutron measurements in space, Space Science Rev., 14, 663–675.

    Article  ADS  Google Scholar 

  • Lyagushin, V.I., Sevastyanov, V.D., V.D., Tarnovsky, G.V. (1997) A measurements of energetic spectrum of neutrons on orbital station “Mir”, Kosmicheskie Issledovaniya, 35, 216–225 (in Russian).

    Google Scholar 

  • Makletsov, A.A., Mileev, V.N., Novikov, L.S., Sinolits, V.V. (1997) Radiation environment modeling onboard spacecrafts, Engineering Ecology, 1, 39–51 (in Russian).

    Google Scholar 

  • Mcllwain, C.E. (1996) Processes Acting upon outer zone electrons, in’ Radiation belts: Models and Standards’, in J. Lemaire, D. Heynderickx, D. Baker (eds.), Radiation belts: models and standards, Geophysical Monograph 97, Washington.

    Google Scholar 

  • Morfill, G.E. (1973) Guiding center approximation of trapped particles, J. Geophysical Research, 78, 588–593.

    Article  ADS  Google Scholar 

  • Nymmik R.A. (1999) Probabilistic Model for fluences and peak fluxes of solar energetic particles”, Radiation measurements, 39, 287–296.

    Article  Google Scholar 

  • Nymmik,R.A., Panasyuk, M.I., and Suslov, A.A. (1995) Galactic cosmic ray flux simulation and prediction, Adv. Space Res. 17, 19–23.

    Article  ADS  Google Scholar 

  • Panasyuk, M. I. (1993) Anomalous cosmic ray studies on “Cosmos” satellites, Proc. 23th Int. Cosmic Ray Conference, 4, 455–463.

    Google Scholar 

  • Panasyuk, M.I., Sosnovets, E.N., Grafodatsky, O.S., Verkhoturov, V.I., Islyaev. Sh.N. (1996) First results and perspectives of monitoring radiation belts, in J. Lemaire, D. Heynderickx, D. Baker (eds.), Radiation belts: models and standards, Geophysical Monograph 97, Washington, 211–216.

    Chapter  Google Scholar 

  • Pickel, J.C. (1996) Single event effect prediction, IEEE Trans. Nucl. Sci. 43, 483–495.

    Article  ADS  Google Scholar 

  • Rodgers, D.J., (1996) A New Empirical Electron Model,, in ‘Radiation belts: Models and Standards’, in J. Lemaire, D. Heynderickx, D. Baker (eds.), Radiation belts: models and standards, Geophysical Monograph, 97, Washington, 103–107.

    Chapter  Google Scholar 

  • Sawyer, D.M., Vette, J.I. (1979) AP-8 trapped proton environment for solar maximum and solar minimum, NSSSDC/WDC-R&S.

    Google Scholar 

  • Seltser, S.M. (1979) Electron, electron-bremsstrahlung and proton depth-dose data for space shielding applications, IEEE Trans. Nucl. Sci., NS26, 21–60.

    Google Scholar 

  • Spejeldvik, W.N. (1979) Transport,charge exchange and loss of energetic heavy ions in the Earth’s radiation belts: applicability and limitation of theory, Planetary Space Sciences, 20, 1215–1226.

    Google Scholar 

  • Tsyganenko, N.N. (1989) A magnetospheric magnetic field model with a wrapped tail current sheet, Planetary Space Sciences 37, 5–20.

    Article  ADS  Google Scholar 

  • Tverskaya, L.V. (1996) Dynamics of energetic electrons in the radiation belts, in J. Lemaire, D. Heynderickx, D. Baker (eds.), Radiation belts: models and standards, Geophysical Monograph 97, Washington, 183–187.

    Chapter  Google Scholar 

  • Tverskoy, B.A. (1964) Dynamics of radiation belts, Geomgnetizm i aeronomiya, 5, 436–441 (in Russian).

    Google Scholar 

  • Tylka, A., Adams, J., Boberg, PR., Brownstein, B., Dietrich, W.F., Fluechiger, E.O., Petersen, E.L., Shea, M.A., Smart D.F., and Smith, E.C. (1997) CREME96: A revision of the cosmic ray effects on microelectronics code, IEEE Transactions on Nuclear Science, 44, 2150–2160.

    Article  ADS  Google Scholar 

  • Vampola, A.L., Osborn, J.V., Johnson, B.M. (1992) The CRRES magnetic electron spectrometer AFGL 701-5A (MEA), J. Spacecraft & Rockets, 29, 592–594.

    Article  ADS  Google Scholar 

  • Vampola, A.L., (1994) Analysis of environmentally induced spacecraft anomalies, J. Spacecraft & Rockets, 31, 154–159.

    Article  ADS  Google Scholar 

  • Vampola, A.L. (1996) The nature of bulk charging and its mitigation in spacecraft design, In WESCON Proc, Anaheim, California, 234–241.

    Google Scholar 

  • Vette, J.I. (1991) The AE-8 trapped electron environment, NSSSDC/WDC-R&S.

    Google Scholar 

  • Williams, DJ., Arens, I.F., Lanzerrotti, L.T. (1968) Observations of trapped electrons at low and high altitudes, J. Geophys. Res. 73, 5673–5689.

    Article  ADS  Google Scholar 

  • Williams, D. (1966) 27-day periodicity of the trapped electron fluxes, J.Geophys. Res., 71, 7–21.

    Google Scholar 

  • Yushkov., B.Yu., (1988), Neutron flux measurements onboard Salyut-6 orbital station, Kosmicheskie issledovaniya, 26, 793–796 (in Russian).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panasyuk, M.I. (2001). Cosmic Ray and Radiation Belt Hazards for Space Missions. In: Daglis, I.A. (eds) Space Storms and Space Weather Hazards. NATO Science Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0983-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0983-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0031-7

  • Online ISBN: 978-94-010-0983-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics