TOPOLOGY AND TOPOLOGICAL DISORDER IN SILICA

  • Linn W. Hobbs
  • Xianglong Yuan
Part of the NATO Science Series book series (NAII, volume 2)

Abstract

In this contribution, we define silica generically as comprising all compounds of silicon and oxygen with the composition SiO2. These compounds are among the most abundant on the earth’s surface and adopt a large number of possible polymorphic forms, among them the seven compact crystalline polymorphs cristobalite, tridymite, moganite, keatite, quartz, coesite and stishovite (the last two high-pressure forms); a family of porous framework structures (e.g. silicalite); vitreous silica obtained by cooling molten silica without crystallization through a glass transition; aperiodic metamict silicas formed by radiation-induced disordering; and other non-crystalline forms produced by application of pressure, oxidation of silicon, vapor deposition or dehydration of gels [1]. All of these solid forms of silica share a common composition, a common chemistry and even (with the exception of stishovite) a common structural element: a substantially covalent [SiO4] tetrahedral unit; but they are all structurally very different (Table 1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hobbs, L.W., Jesurum, C.E. and Berger, B. (1998) Local topology of silica networks, Philos. Mag. A 78, 679–711.Google Scholar
  2. 2.
    Thorpe, M.F. and Duxbury, P.M.(eds) (1999) Rigidity Theory and Applications, Kluwer-Plenum, New York.Google Scholar
  3. 3.
    Hobbs, L.W. (1995) Network topology in aperiodic networks, J. Non-Cryst. Solids 192/193, 79–91.CrossRefGoogle Scholar
  4. 4.
    Hobbs, L.W., Jesurum, C.E. and Berger, B. (2000) The topology of silica networks, in R.A. Devine, J.-P. Duraud, and E. Dooryhee (eds), Structure and Imperfections in Amorphous and Crystalline SiO 2, John Wiley&Sons, London.Google Scholar
  5. 5.
    Zachariasen, W. H. (1932) The atomic arrangements in glass, J. Amer. Chem. Soc. 545, 3841–51.CrossRefGoogle Scholar
  6. 6.
    Qin, L.C. and Hobbs, L.W. (1995) Energy-filtered diffraction study of vitreous and amorphized silicas, J. Non-Cryst. Solids 192&193, 456–62.CrossRefGoogle Scholar
  7. 7.
    Primak, W. (1975) Compacted States of Vitreous Silica-Studies on Radiation Effects in Solids, Gordon and Breach, New York.Google Scholar
  8. 8.
    Weeks, R.A. and Kinser, D.L. (eds.) (1987) Effects of Modes of Formation on the Structure of Glasses, Trans. Tech. Publications, Aedermannsdorf, Switzerland; Diffusion Defect Data 53–54.Google Scholar
  9. 9.
    Gupta, P.K. (1993) Rigidity, connectivity and glass forming ability, J. Amer. Ceram. Soc. 76, 1088–95.CrossRefGoogle Scholar
  10. 10.
    Hobbs, L.W, Sreeram, A.N., Berger, B. and Jesurum, C.E. (1996) Structural freedom, topological disorder, and the irradiation-induced amorphization of ceramic structures, Nucl. Instrum. Meth. Phys. Res. B116, 17–25.Google Scholar
  11. 11.
    Hobbs, L.W., Jesurum, C.E. and Berger, B. (1999) Rigidity constraints in amorphization of singly-and multiply-polytopic structures, in ref. 2, pp. 191–215; Hobbs, L.W., Jesurum, C.E. and Berger, B. (1999) Rigidity constraints in amorphization of multiply-polytopic multiply-connected ceramic structures, Mat. Res. Soc. Symp. Proc. 540, 717-28.Google Scholar
  12. 12.
    International Tables for X-ray Crystallography (1962), Vol. 1, Kynoch Press, Birmingham.Google Scholar
  13. 13.
    Coes, L. (1953) A new dense crystalline silica, Science 118, 131–32.CrossRefGoogle Scholar
  14. 14.
    King, S.V. (1967) Ring configurations in a random network model of vitreous silica, Nature 213, 1112–13.CrossRefGoogle Scholar
  15. 15.
    Marians, C.S. and Hobbs, L.W. (1987) A language for study of network silica glasses, Diffusion and Defect Data 53/54, 31–36.CrossRefGoogle Scholar
  16. 16.
    Goetzke, K. and Klein, H.-J. (1991) Properties and efficient algorithmic determination of different classes of rings in finite and infinite polyhedral networks, J. Non-Cryst. Solids 127, 215–20.CrossRefGoogle Scholar
  17. 17.
    Guttman, L. (1990) Ring structure of the crystalline and amorphous forms of silicon dioxide, J. Non-Cryst. Solids 116, 145–47.CrossRefGoogle Scholar
  18. 18.
    Coxeter, H.S.M. (1974) Regular Complex Polytopes, Cambridge University Press.Google Scholar
  19. 19.
    Marians, C.S. and Hobbs, L.W. (1990) Network properties of crystalline polymorphs of silica, J. Non-Cryst. Solids 168, 265–74.Google Scholar
  20. 20.
    Marians, C.S. and Hobbs, L.W. (1990) Local structure of silica glasses, J. Non-Cryst. Solids 119, 269–82.CrossRefGoogle Scholar
  21. 21.
    Jesurum, C.E., Pulim, V. and Hobbs, L.W. (1998) Topological modeling of amorphized tetrahedral ceramic network structures, J. Nucl. Mater. 253, 87–103.CrossRefGoogle Scholar
  22. 22.
    Marians, C.S. and Hobbs, L.W., Characterization of SiO2 surfaces as a function of network connectivity, J. Non-Cryst. Solids 106, 317–20.Google Scholar
  23. 23.
    Galeener, F.L. (1982) Planar rings in vitreous silica, J. Non-Cryst. Solids 49, 53–62; Galleener, F.J. (1982) Planar rings in glasses, Solid State Commun. 47, 1037-40.CrossRefGoogle Scholar
  24. 24.
    Kabler, M.N. and Williams, R.T. (1978) Vacancy-interstitial pair production via electron-hole recombination in halide crystals, Phys. Rev. B18, 1948–60.Google Scholar
  25. 25.
    Griscom, D.L. (1979) Point defects and radiation damage processes in alpha-quartz, in Proc. 33rd Freq. Control. Symp., Electronic Industries Assn., Washington, DC, pp. 98–109.Google Scholar
  26. 26.
    Hobbs, L.W. and Pascucci, M.R. (1980) Radiolysis and defect structure in electron-irradiated α-quartz, J. Physique 41 (Colloque C6) 237–42.Google Scholar
  27. 27.
    McHargue, C.J., Sklad, P.S. and White, C.W. (1990) The structure of ion implanted ceramics, Nucl. Instrum. Meth. Phys. Res. B46, 79–88.Google Scholar
  28. 28.
    Luzzi, D.E. and Meshii, M.(1987) The crystalline to amorphous transition of intermetallic compounds under electron irradiation-a review, Res. Mechanica 21, 207–47.Google Scholar
  29. 29.
    Hamberg, A. (1914) Die radioaktiven Substanzen und die geologische Forschung, Geol. För. Förh. 36, 31–96.CrossRefGoogle Scholar
  30. 30.
    Eby, R., Ewing, R.C. and Birtcher, R.C. (1990) The amorphization of complex silicates by ion beam irradiation, J. Mater. Res. 7, 3080–3102.CrossRefGoogle Scholar
  31. 31.
    Hobbs, L.W. (1995) The role of topology and geometry in the irradiation-induced amorphization of network structures, J. Non-Cryst. Solids 182, 27–39.CrossRefGoogle Scholar
  32. 32.
    Dove, M.T., Giddy, A.P. and Heine, V. (1991) Rigid unit mode model of displacive transitions in framework silicates, Trans. Amer. Cryst. Assn. 27, 65–75.Google Scholar
  33. 33.
    Primak, W. (1958) Fast neutron-induced changes in quartz and vitreous silica, Phys. Rev. 110,1240–54.CrossRefGoogle Scholar
  34. 34.
    Lell, E., Kreidl, N.J. and Hensler, J.R. (1966) Radiation effects in quartz, silica and glasses, in J. Burke, (ed), Progress in Ceramic Science, Vol. 4, Pergamon Press, New York, pp. 1–94.Google Scholar
  35. 35.
    Primak, W. and Kampwirth, R. (1968) The radiation compaction of vitreous silica, J. Appl. Phys. 39, 5651–58.CrossRefGoogle Scholar
  36. 36.
    Shelby, J. (1980) Effect of radiation on the physical properties of borosilicate glass, J. Appl. Phys. 51, 2561–65.CrossRefGoogle Scholar
  37. 37.
    Qin, L.C., HREM of electron-irradiated silicas, in G.W. Bailey and C.L. Rieder (eds), Proc. 51st Ann. Mtg. Microscopy Society of America, San Francisco Press, San Francisco, pp. 1102–03.Google Scholar
  38. 38.
    Hobbs, L. W. (1984) Radiation effects in analysis by TEM, in J. N. Chapman and A. J. Craven (eds.), Quantitative Electron Microscopy, Scottish Univ. Summer Schools in Physics Publ., Edinburgh, pp. 399–445; Hobbs, L. W. (1987) Electron beam sensitivity in inorganic specimens, Ultramicroscopy 23, 339-44.Google Scholar
  39. 39.
    Wright, A.C. (1993) Neutron and X-ray amorphography, in C.J. Simmons and O.H. El-Bayoumi (eds), Experimental Techniques of Glass Science, American Ceramic Society, Westerville, OH, pp. 205–314.Google Scholar
  40. 40.
    Wright, A.C. (1994) The structure of vitreous silica: What have we learned from 60 years of diffraction studies?, J. Non-Cryst. Solids 179, 84–115.CrossRefGoogle Scholar
  41. 41.
    Elliott, S.R. (1995) Extended-range order, interstitial voids, and the first sharp diffraction peak of network glasses, J. Non-Cryst. Solids 182, 40–48.CrossRefGoogle Scholar
  42. 42.
    Jesurum, C.E., Pulim, V. and Hobbs, L.W. (1998) Modeling the cascade amorphziation of silica with local-rules reconstruction, Nucl. Instrum. Meth. Phys. Res. B114, 25–34.Google Scholar
  43. 43.
    Hobbs, L.W., Jesurum, C.E. and Pulim, V (1998) Topological modeling of cascade amorphization in network structures using local rules, Mater. Sci. Eng. A253, 16–29.Google Scholar
  44. 44.
    Jesurum, C.E., Pulim, V., Hobbs, L.W. and Berger, B. (1998) Modeling collision cascade structure of SiO2, Si2N2 and SiC using local topological approaches, Mater. Res. Soc. Symp. Proc. 504, 39–44.CrossRefGoogle Scholar
  45. 45.
    Hobbs, L.W., Jesurum, C.E., Coventry, A., Pulim, V. Schwartz, R. and Berger, B. (1999) Towards a topological description of poorly-crystalline networks, in Y.-W. Chung, D. Dunand, P. Liaw and G. Olson (eds), Advanced Materials for the 21at Century: The Julia R. Weertman Symposium, TMS Publications, Warrendale, PA, p. 475–86.Google Scholar
  46. 46.
    Gabow, H.N. (1975) An efficient implementation of Edmond’s algorithm for maximum matching of graphs, J. Assoc. Comp. Mach. 23, 221–34.CrossRefGoogle Scholar
  47. 47.
    Cormack, A.N. and Cao, Y. (1997) Molecular dynamics simulations of silicate glass, in B. Silvi and P. d’Arco (eds), Modeling of Minerals and Silicated Materials, Kluwer Academic Publishers, Dordrecht, pp. 227–71.Google Scholar
  48. 48.
    Vessal, B., Amini, M. and Catlow, C.R.A. (1993) Computer simulation of the structure of silica glass, J. Non-Cryst. Solids 159, 184–86.CrossRefGoogle Scholar
  49. 49.
    van Beest, B.W.H., Kramer, G.J. and van Santen, R.A. (1990) Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett. 64, 1955–58.CrossRefGoogle Scholar
  50. 50.
    Yuan, X. and Hobbs, L. W. (2000) Refinement of topologically modeled cascade-amorphized silicas using molecular dynamics simulation, in G. E. Lucas, L. Snead, M. A. Kirk, Jr. and R. G. Elliman (eds), Microstructural Processes in Irradiated Materials, Materials Research Society, Warrendale, PA, in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Linn W. Hobbs
    • 1
  • Xianglong Yuan
    • 1
  1. 1.Massachusetts Institute of TechnologyU.S.A.

Personalised recommendations