Instabilities and Formation of Coherent Structures

  • F. Mottez
Conference paper


This tutorial paper is devoted to theoretical aspects of the coherent electrostatic struc-tures that have been encountered in various space plasmas. These structures, called solitary waves, electrostatic shocks or double layers have been observed in the solar wind, the Earth bow shock, the auroral zones and the magnetotail. Most of these structures can be interpreted in terms of electron or ion phase Space holes. Their 1D structure, their emergence from plasma instabilities, their mutual interactions, their bidimensional stability, and their ability to create large scale electric fields are discussed in this paper.


Solar Wind Solitary Wave Coherent Structure Electron Hole Trap Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al’thsul, L. and Karpman, V.I.: 1966, Theory of nonlinear oscillations in a collisionless plasma, Soviet Phys. J.E.T.R 22, 361.ADSGoogle Scholar
  2. Bale, S.D., Kellog, P.J., Larson, D.E., Lin, R.P. and Lepping, R.R: 1998, Bipolar electrostatic structures in the shock transition: evidence of electron phase Space holes, Geophys. Res. Lett. 25, 2929–2932.ADSCrossRefGoogle Scholar
  3. Berk, H.L., Nielsen, C.E. and Roberts, K.V.: 1970, Phase space hydrodynamics of equivalent nonlinear Systems: Experimental and computational observations, Phys. Fluids 13, 980.ADSzbMATHCrossRefGoogle Scholar
  4. Bernstein, LB., Green, J.M. and Kruskal, M.D.: 1957, Exact nonlinear plasma oscillations, Phys. Rev. 108, 546.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. Boström, R., Gustafsson, G., Holback, B., Holmgreen, G., Koskinen, H. and Kintner, P: 1988, Characteristics of solitary waves and weak double layers in the magnetospheric plasma, Phys. Rev. Lett. 61(1), 82.ADSCrossRefGoogle Scholar
  6. Bryant, D.A.: 1990, Phys. Scripta T30, 215.ADSCrossRefGoogle Scholar
  7. Chanteur, G., Adam, J.C., Pellat, R. and Volokhitin, A.S.: 1983, Formation of ion acoustic double layers, Phys. Fluids 26(6), 1584.ADSzbMATHCrossRefGoogle Scholar
  8. Dovner, P.O., Eriksson, A.I., Boström, R. and Holback, B.: 1994, Freja multiprobe observations of electrostatic solitary structures, Geophys. Res. Lett. 21, 1827.ADSCrossRefGoogle Scholar
  9. Dupree, T.H.: 1982, Theory of phase-space density holes, Phys. Fluids 25, 277.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. Ergun, R.E., Carlson, C.W., McFadden, J.P., Mozer, F.S., Delory, G.T., Peria, W., Chaston, C, Temerin, M., Roth, I., Muschietti, L., Elphic, R.C., Strangeway, R., Pfaff, R., Cattel, CA., Klumpar, D., Shelley, E., Peterson, W., Moebius, E. and Kistler, L.: 1998, FAST satellite observations of large-amplitude solitary structures, Geophys. Res. Lett. 25, 2041.ADSCrossRefGoogle Scholar
  11. Mälkki, A., Eriksson, A.I., Dovner, P.O., Boström, R., Holback, B., Holmgren, G. and Koskinen, H.E.J.: 1993, A Statistical survey of auroral solitary waves and weak double layers, occurence and net voltage, J. Geophys. Res. 98, 15,521.ADSCrossRefGoogle Scholar
  12. Mangeney, A., Salem, C., Lacombe, C., Bougeret, J.-L., Perche, C., Manning, R., Kellogg, P.J., Goetz, K., Monson, S.J. and Bosqued, J.-M.: 1999, WIND observations of coherent electrostatic waves in the solar wind, Ann. Geophys. 17, 307–320.ADSCrossRefGoogle Scholar
  13. Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, M, Nagano, I. and Tsutsui, M.: 1994, Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by Geotail, Geophys. Res. Lett. 21, 2915.ADSCrossRefGoogle Scholar
  14. Mottez, F., Chanteur, G. and Roux, A.: 1992, Filamentation of plasma in the auroral region by an ion-ion instability: A process for the formation of bidimensional potential structures, J. Geophys. Res. 97, 10,801–10,810.ADSCrossRefGoogle Scholar
  15. Mottez, F., Roux, A., Perraut, S. and Louarn, P: 1997, Coherent structures in the magnetotail triggered by a double electron beam, J. Geophys. Res. 102, 11399.ADSCrossRefGoogle Scholar
  16. Muschietti, L.: 1999, BGK electron holes and stability AGU fall meeting.Google Scholar
  17. Omura, Y, Matsumoto, H., Miyake, T. and Kojima, H.: 1996, Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail, J. Geophys. Res. 101, 2685.ADSCrossRefGoogle Scholar
  18. O’Neil, T.: 1965, Collisionless damping of nonlinear plasma oscillations, Phys. Fluids 8, 2255.MathSciNetADSCrossRefGoogle Scholar
  19. Salem, C, Mangeney, A. and Bougeret, J.L.: 1999, Coherent Electrostatic Nonlinear Waves in Collisionless Space Plasmas, in: T. Passot and PL. Sulem (eds.), Nonlinear MHD Waves and Turbulence, Lecture Notes in Physics, N, Springer-Verlag.Google Scholar
  20. Sato, T. and Okuda, H.: 1981, Numerical simulations of ion acoustic double layers, J. Geophys. Res. 86, 3357–3368.ADSCrossRefGoogle Scholar
  21. Schamel, H.: 1982, Kinetic theory of phase Space vortices and double layers, Phys. Scripta T2/1, 228–237.ADSCrossRefGoogle Scholar
  22. Temerin, M., Cerny, K., Lotko, W. and Mozer, ES.: 1982, Observations of double layer and solitary waves in the auroral plasma, Phys. Rev. Lett. 48, 1175.ADSCrossRefGoogle Scholar
  23. Tetreault, D.: 1991, Theory of electric fields in the auroral acceleration region, J. Geophys. Res. 96, 3,549.ADSCrossRefGoogle Scholar
  24. Verga, A.D., Chanteur, G. and Pellat, R.: 1988, Current driven double layers under linearly stable conditions, Phys. Fluids 31, 2625.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • F. Mottez
    • 1
  1. 1.Centre d’études en Environnements Terrestre et Planétaires (CETP-CNRS)France

Personalised recommendations