Observational Evidence of Dissipative Small Scale Processes: Geotail Spacecraft Observation and Simulation of Electrostatic Solitary Waves

  • Y. Omura
  • H. Kojima
  • T. Umeda
  • H. Matsumoto
Conference paper


In recent spacecraft observations, coherent microscale structures such as electrostatic solitary waves are observed in various regions of the magnetosphere. The Geotail spacecraft Observation has shown that these solitary waves are associated with high energy non-thermal electrons flowing along the magnetic field. The solitary structures are generated as a result of a long time evolution of coherent nonlinear trapping of electrons as found in bump-on-tail, bi-stream and Buneman in-stabilities. It is noted that these solitary waves can be generated at distant regions far away from the spacecraft locations, because these trapped electrons, or electron holes, are drifting much faster than the local thermal plasmas. Some of the solitary waves are accompanied by perpendicular electric fields indicating that two- or three-dimensional potential structures are passing by the spacecraft. Depending on the local plasma parameters, these multi-dimensional solitary structures couple with perpendicular modes such as electrostatic whistler modes and lower-hybrid modes. In a long time evolution, these perpendicular modes are dissipated via self-organization of small solitary potentials, leading to formation of one-dimensional potential troughs as observed in the deep magnetotail. The above dissipative small-scale processes are reproduced in particle simulations, and they can be used for diagnostics of electron dynamics from spacecraft Observation of multi-dimensional solitary waves in various regions of the magnetosphere.


Solitary Wave Electron Hole Velocity Distribution Function Potential Structure Solitary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bale, S.D., Kellogg, P.J., Larson, D.E., Lin, R.P., Goetz, K. and Lepping, R.P.: 1998, Bipolar electro-static structures in the shock transition region: Evidence of electron phase space holes, Geophys. Res. Lett. 25(15), 2929–2932.ADSCrossRefGoogle Scholar
  2. Berk, H.L. and Roberts, K.V.: 1967, Nonlinear Study of Vlasov’s Equation for a Special Class of Distribution Functions, Phys. Fluids 10, 1595–1597.ADSCrossRefGoogle Scholar
  3. Bernstein, LB., Greene, J.M. and Kruskal, M.D.: 1957, Exact nonlinear plasma oscillations, Phys. Rev. 108, 546–550.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Ergun, R.E., Carlson, C.W., McFadden, J.P., Mozer, F.S., Delory, G.T., Peria, W., Chaston, C.C., Temerin, M., Roth, I., Muschietti, L., Elphic, R., Strangeway, R., Pfaff, R., Cattell, CA., Klumpar, D., Shelley, E., Peterson, W., Moebius, E. and Kistler, L.: 1998, FAST satellite observations of large-amplitude solitary structures, Geophys. Res. Lett. 25(12), 2041–2044.ADSCrossRefGoogle Scholar
  5. Franz, J.R., Kintner, P.M. and Pickett, J.S.: 1998, POLAR observations of coherent electric field structures, Geophys. Res. Lett. 25(8), 1277–1280.ADSCrossRefGoogle Scholar
  6. Goldman, M.V., Oppenheim, M.M. and Newman, D.L.: 1999, Nonlinear two-stream instabilities as an explanation for auroral bipolar wave structures, Geophys. Res. Lett. 26(13), 1821–1824.ADSCrossRefGoogle Scholar
  7. Gurnett, D.A., Frank, L.A. and Lepping, R.P: 1976, Plasma waves in the distant magnetotail, J. Geophys. Res. 81, 6059–6071.ADSCrossRefGoogle Scholar
  8. Kojima, FL, Matsumoto, FL, Miyatake, T., Nagano, L, Fujita, A., Frank, L.A., Mukai, T., Patersonk, W.R., Saito, Y., Machida, S. and Anderson, R.R.: 1994, Relation between electrostatic solitary waves and hot plasma flow in the plasma sheet boundary layer: GEOTAIL Observations, Geophys. Res. Lett. 21, 2,919–2,922.ADSCrossRefGoogle Scholar
  9. Kojima, FL, Omura, Y., Matsumoto, FL, Miyaguti, K. and Mukai, T.: 1999, Characteristics of Electrostatic Solitary Waves Observed in the Plasma Sheet Boundary: Statistical Analyses, Nonlinear Processes in Geophysics 6, 179–186.ADSCrossRefGoogle Scholar
  10. Krasovsky, V.L., Matsumoto, H. and Omura, Y: 1999, Interaction of Small Phase Density Holes Phys. Scripta 60, 438–451.ADSCrossRefGoogle Scholar
  11. Matsumoto, FL, Nagano, L, Anderson, R.R., Kojima, FL, Hashimoto, K., Tsutsui, M., Okada, T., Kimura, L, Omura, Y and Okada, M.: 1994, Plasma Wave Observations with GEOTAIL Spacecraft, Journal of Geomagnetism and Geoelectricity 46, 59–95, 1994.CrossRefGoogle Scholar
  12. Matsumoto, H., Kojima, H., Miyatake, S., Omura, Y, Okada, M., Nagano, I. and Tsutsui, M.: 1994, Geophys. Res. Lett. 21, 2,915–2,918.ADSCrossRefGoogle Scholar
  13. Miyake, T., Omura, Y., Matsumoto, H. and Kojima, H.: 1998, J. Geophys. Res. 103, 11,841–11,850.ADSCrossRefGoogle Scholar
  14. Omura, Y., Kojima, H. and Matsumoto, H.: 1994, Computer Simulation of Electrostatic Solitary Waves: A Nonlinear Model of Broadband Electrostatic Noise, Geophys. Res. Lett. 21, 2,923–2,926.ADSCrossRefGoogle Scholar
  15. Omura, Y., Matsumoto, H., Miyake, T. and Kojima, H.: 1996, Electron beam instabilities as gen-eration mechanism of electrostatic solitary waves in the magnetotail, J. Geophys. Res. 101, 2,685–2,697.ADSCrossRefGoogle Scholar
  16. Omura, Y., Kojima, H., Miki, N., Mukai, T., Matsumoto, H. and Anderson, R.: 1999, Electrostatic solitary waves carried by diffused electron beams observed by GEOTAIL spacecraft, J. Geophys. Res. 104, 14,627–14,637.ADSCrossRefGoogle Scholar
  17. Saeki, K., Michelsen, P., Pecseli, H.L. and Juul Rasmussen, J.: 1979, Phys. Rev. Lett. 43, 501–504.ADSCrossRefGoogle Scholar
  18. Schriver, D. and Ashour-Abdalla, M.: 1987, Generation of high-frequency broadband electrostatic noise: The role of cold electrons, J. Geophys. Res. 92, 5807–5819.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Y. Omura
    • 1
  • H. Kojima
    • 1
  • T. Umeda
    • 1
  • H. Matsumoto
    • 1
  1. 1.Radio Science Center for Space and AtmosphereKyoto UniversityJapan

Personalised recommendations