Advertisement

Developments in Jovian Radio Emissions Tomography and Observations Techniques

  • H. O. Rucker
  • M. Y. Boudjada
  • M. Leitner
  • A. Lecacheux
  • M. Aubier
  • A. Konovalenko
  • P. H. M. Galopeau
  • V. Shaposhnikov
Conference paper

Abstract

Jupiter radio emission is known to be the most powerful nonthermal planetary radiation. In recent years specifically space-based observations allow us to permanently cover a large frequency band (from 100 kHz up to 40 MHz combined with ground-based telescopes) of the Jovian spectrum. The Plasma and Wave Science experiment onboard Galileo enables the observation of Jovian kilo-metric and hectometric emissions; Wind/WAVES and ground-based telescopes (mainly Decametric Array in Nancay, France, and UTR-2 in Kharkov, Ukraine) cover also hectometric and mainly decametric emissions. Specific geometrical configurations between Cassini approaching Jupiter and Wind spacecraft orbiting Earth, with Galileo orbiting Jupiter and Wind, in combination with ground-based observations provide a new approach to perform Jovian radio tomography. The tomography technique is used to analyze ray paths of Jovian radio emission observed in different directions (e.g. solar and anti-solar direction) and for different declination of Earth. The developments of Jovian radio emission tomography in recent years treated refraction effects and its connection to the local magnetic field in the radio source as well as the radio wave propagation through the Io torus and the terrestrial ionosphere. Most recently ground-based multi-site and simultaneous Jupiter decametric radio observations by means of digital spectropolarimeter and waveform receiver provide the basis of a new data analysis treatment. The above addressed topics are without exemption deeply connected to the plasma structures the radio waves are generated in and propagating through.

Keywords

Radio Emission Radio Source Faraday Rotation Wind Spacecraft Jovian Magnetosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boudjada, M.Y. and Lecacheux, A.: 1991, Faraday rotation of Jupiter’s decametric radiation, Astrem. Astrophys. 247, 235.ADSGoogle Scholar
  2. Budden, K.G.: 1985, The Propagation of Radio Waves in the Ionosphere, Univ. Press, Cambridge.CrossRefGoogle Scholar
  3. Carr, T.D. and Reyes, F.: 1999, Microstructure of Jovian decametric S bursts, J. Geophys. Res., 25.127.Google Scholar
  4. Dulk, G.A., Lecacheux, A. and Leblanc, Y.: 1992, The complete polarization state of Io-related radio storms from Jupiter: a statistical study, Astron. Astrophys. 253, 292.ADSGoogle Scholar
  5. Kaiser, M.L., Zarka, P., Kurth, W.S., Hospodarsky, G.B. and Gurnett, D.A.: 2000, Cassini and Wind stereoscopic observations of Jovian nonthermal radio emissions: Measurements of beam widths, J. Geophys. Res. 105, 16053.ADSCrossRefGoogle Scholar
  6. Kleewein, P.: 1997, Spectral Analysis of Magnetospheric Radio Emissions, Doctoral Thesis, University of Graz, Austria.Google Scholar
  7. Ladreiter, H.P., Litvinenko, G., Boudjada, M.Y. and Rucker, H.O.: 1995, Faraday rotation in Jupiter’s decametric radio emissions used for remote sensing of the terrestrial ionosphere and the emission’s source region at Jupiter, Planet. Space Sci. 43, 1595.ADSCrossRefGoogle Scholar
  8. Lecacheux, A., Boudjada, M.Y., Rucker, H.O., Bougeret, J.L., Manning, R. and Kaiser, M.L.: 1998, Jovian decametric emissions observed by the Wind/WAVES radioastronomy experiment. Astron. Astrophys. 329, 776.ADSGoogle Scholar
  9. Leitner, M.: 1999, Waveform Analysis of Radio Emissions in the Decametric Range, Diploma Thesis, University of Graz, Austria.Google Scholar
  10. Queinnec, J. and Zarka, P.: 1998, Io-controlled decametric arcs and Io-Jupiter interaction, J. Geophys. Res. 103, 26.649.ADSCrossRefGoogle Scholar
  11. Shaposhnikov, V.E., Boudjada, M.Y., Rucker, H.O., Zaitsev, V.V. and Aubier, M.: 1999, On features of Faraday rotation of the decametric emission in the Jovian magnetosphere, Astron. Astrophys. 344, 709.ADSGoogle Scholar
  12. Warwick, J.W. and Dulk, G.A.: 1964, Faraday rotation on decametric radio emissions from Jupiter, Science 145, 380.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • H. O. Rucker
    • 1
  • M. Y. Boudjada
    • 1
  • M. Leitner
    • 1
  • A. Lecacheux
    • 2
  • M. Aubier
    • 2
  • A. Konovalenko
    • 3
  • P. H. M. Galopeau
    • 4
  • V. Shaposhnikov
    • 5
  1. 1.Space Research InstituteGrazAustria
  2. 2.Observatoire de Paris-MeudonFrance
  3. 3.Institute of Radio astronomyKharkovUkraine
  4. 4.Centre d’Etude des Environnements Terrestre et PlanetaireVelizyFrance
  5. 5.Institute of Applied PhysicsNizhny NovgorodRussia

Personalised recommendations