The Physics and Chemistry of Sputtering by Energetic Plasma Ions

  • R. E. Johnson
  • F. Leblanc
Conference paper


Energetic ions from the solar wind, local pick-up ions or magnetospheric plasma ions impact the atmospheres and surfaces of a number of solar system bodies. These energetic incident ions deposit energy in the gas or solid. This can lead to the ejection of atoms and molecules, a process referred to as sputtering. In this paper we first describe the physics and chemistry of atmospheric and surface sputtering. We then apply this to the production of a thin atmosphere on Europa by magnetospheric ion bombardment of Europa’s surface and show that Europa loses more Na atoms than it receives from the Jupiter magnetosphere. The loss of atmosphere from Mars in earlier epochs by pick-up ion sputtering of that atmosphere is also calculated.


Solar Wind Neutral Atmosphere Martian Atmosphere Surface Sputtering Solar System Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, H.H. and Bay, H.L.: 1981, in: D. Behrisch (ed.), Sputtering by particle bombardment I, Springer-Verlag, Berlin.Google Scholar
  2. Bougher, S.W., Engel, S., Roble, R.G. and Foster, B.: 1999, Comparative terrestrial planet thermospheres. 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res. 104, 16591–16611.ADSCrossRefGoogle Scholar
  3. Brecht, S.H.: 1997, Solar wind proton deposition into the Martian atmosphere, J. Geophys. Res. 102, 11287–11294.ADSCrossRefGoogle Scholar
  4. Brown, M.E.: 2001, Potassium in Europa’s atmosphere, Icarus, in press.Google Scholar
  5. Brown, M.E. and Hill, R.E.: 1996 Discovery of an extended sodium atmosphere around Europa, Nature 380, 229–231.ADSCrossRefGoogle Scholar
  6. Brown, W.L., Lanzerotti, L.J., Poate, J.M. and Augustyniak, W.M.: 1978, Sputtering of ice by MeV ions, Phys. Rev. Lett. 49, 1027–1030.ADSCrossRefGoogle Scholar
  7. Cooper, J.H., Johnson, R.E., Mauk, B.H. and Gehreis, N.: 2001, Energetic ions and electron irradiation of the icy Galilean satellites, Icarus 149, 133–159.ADSCrossRefGoogle Scholar
  8. Haff, P.X. and Watson, C.C.: 1979, The erosion of planetary and satellite atmospheres. J. Geophys. Res. 84, 8436–8442.ADSCrossRefGoogle Scholar
  9. Hall, D.T., Strobel, D.F., Feldman, P.D., McGrath, M.A. and Weaver, H.A.: 1995, Detection of an oxygen atmosphere on Jupiter’s moon Europa, Nature 373, 677–679.ADSCrossRefGoogle Scholar
  10. Jakosky, B.M., Pepin, R.O., Johnson, R.E. and Fox, J.L.: 1994, Mars atmospheric loss and iostropic fractionation by solar-wind induced sputtering and photochemical escape, Icarus 111, 271–288.ADSCrossRefGoogle Scholar
  11. Johnson, R.E.: 1990, Energetic charged-particle interactions with atmospheres and surfaces, Springer Verlag, Berlin.CrossRefGoogle Scholar
  12. Johnson, R.E.: 1994, Plasma-ion sputtering of an atmosphere, Space Sci. Rev. 69, 215–253.ADSCrossRefGoogle Scholar
  13. Johnson, R.E.: 1996, Sputtering of ices in the outer solar system. Rev. Modern Phys. 68, 305–312.ADSCrossRefGoogle Scholar
  14. Johnson, R.E.: 1998, Sputtering and desorption from icy surfaces, in: B. Schmitt, C. Debergh and M. Festou (eds.), Solar Sytem Ices, pp. 303–334.Google Scholar
  15. Johnson, R.E.: 2000, Sodium at Europa, Icarus 143, 429–433.ADSCrossRefGoogle Scholar
  16. Johnson, R.E.: 2001, Surface chemistry in the Jovian radiation environment, in: R. Dessler (ed.), Chemical Dynamics in Extreme Environments, Chap. 8, pp. 390–419.Google Scholar
  17. Johnson, R.E., Killen, R.M., Waite, J.H. and Lewis, W.S.: 1998, Europa’s surface composition and sputter-produced atmosphere. Geophys. Res. Lett. 25, 3257–3260.ADSCrossRefGoogle Scholar
  18. Johnson, R.E. and Luhmann, J.G.: 1998, Sputter contribution to the atmospheric corona on Mars, J. Geophys. Res. 103, 3649–3653.ADSCrossRefGoogle Scholar
  19. Johnson, R.E., Lanzerotti, L.J. and Brown, W.L.: 1982, Planetary applications of ion sputtering of ices, Nucl. Instrum. Methods 198, 147–157.ADSCrossRefGoogle Scholar
  20. Johnson, R.E., Schnellenberger, D. and Wong, M.C.: 2000, The sputtering of an oxygen thermosphere by energetic O+, J. Geophys. Res. 105, 1659–1670.ADSCrossRefGoogle Scholar
  21. Jurac, S.: 2001, Saturn’s E-ring and the production of a neutral torus, Icarus, 149, 384–396.ADSCrossRefGoogle Scholar
  22. Kass, D. M. and Yung, Y.L.: 1995, Loss of atmosphere from Mars due to solar-wind induced sputtering, Science 268, 697–699.ADSCrossRefGoogle Scholar
  23. Lanzerotti, L.J., Brown, W.L., Poate, J.N. and Angustyniak, W.M.: 1978, On the contribution of water products from Galilean satellites to the Jovian magnetosphere, Geophys. Res. Lett. 5, 155–158.ADSCrossRefGoogle Scholar
  24. Luhmann, J.G. and Kozyra, J.U.: 1991, Dayside pick-up oxygen in precipitation at Venus and Mars: Spatial distribution, energy deposition and consequences, J. Geophys. Res. 96, 5457–5467.ADSCrossRefGoogle Scholar
  25. Matson, D.L., Johnson, T.V. and Fanale, F.P.: 1974, Sodium D-line emission from Io: sputtering and resonant scattering hypothesis, Astrophys. J. 192, L43–L46.ADSCrossRefGoogle Scholar
  26. Nash, D. and Fanale, F.P.: 1977, Io’s surface composition based on reflectance spectra of sulfur/salt mixtures and proton-irradiation experiments, Icarus 31, 40–80.ADSCrossRefGoogle Scholar
  27. Popieszalska, M.K. and Johnson, R.E.: 1989, Magnetospheric ion bombardment profiles of satellites: Europa and Dione, Icarus 78, 1–13.ADSCrossRefGoogle Scholar
  28. Reimann, C.T., Boring, J.W., Johnson, R.E., Garett, J.W., Farmer, K.R. and Brown, W.L.: 1984, Ion-induced molecular ejection from D2O ice, Surf. Sci. 147, 227–240.ADSCrossRefGoogle Scholar
  29. Saur, J., Strobel, D.F. and Neubauer, F.M.: 1998, Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere, J. Geophys. Res. 103, 19947–19962.ADSCrossRefGoogle Scholar
  30. Shemansky, D.E., Matherson, P., Hall, D.T., Hu, H.-Y. and Tripp, T.M.: 1993, Detection of the hydroxil radiacal in the Saturn magnetosphere, Nature 363, 329–332.ADSCrossRefGoogle Scholar
  31. Smyth W.H. and Combi, M.R.: 1988, A general model for Io’s neutral gas clouds. II Application to the sodium cloud, Astrophys. J. 328, 888–918.ADSCrossRefGoogle Scholar
  32. Sprague, A.L., R.W.H. Kozlowski, D.M. Hunten, W.K. Wells, and F.A. Grosse: 1992, The sodium and potassium atmosphere of the Moon and its interaction with the surface, Icarus 96, 27–42.ADSCrossRefGoogle Scholar
  33. Weins, R.C., Burnett, D.S., Calaway, W.F., Hansen, C.S., Lykkem, K.R. and Pellin, M.L.: 1997, Sputtering products of sodium sulfate: Implications for Io’s surface and for sodium bearing molecules in the Io torus, Icarus 128, 386–397.ADSCrossRefGoogle Scholar
  34. Yakshinskiy, B.V. and Madey, T.E.: 1999, Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere, Nature 400, 642–644.ADSCrossRefGoogle Scholar
  35. Zhang, M.H.G., Luhmann, J.G., Bougher, S.W. and Nagy, A.E: 1993, The ancient oxygen exosphere of Mars: Implication for atmospheric evaluations, J. Geophys. Res. 98, 10915–10923.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • R. E. Johnson
    • 1
  • F. Leblanc
    • 1
  1. 1.Engineering PhysicsUniversity of VirginiaUSA

Personalised recommendations