Advertisement

Jets from Young Stars and Compact Objects Environments

  • Guy Pelletier
Conference paper

Abstract

Several classes of cosmic objects, such as Young Stellar Objects, Active Galactic Nuclei, Micro-Quasars, Pulsars and probably Gamma Ray Bursts, display powerful winds and jets; for some of them the flow is even ultrarelativistic. For all these classes of objects, the magnetic field is supposed to play a major role in launching and collimating the flow, together with the angular momentum transfer. It probably plays an important role for the turbulent transport in accretion disks also. Regarding the high energy radiation of relativistic jets and the cosmic ray generation, the magnetic field is of course the acceleration agent and could produce the Ultra High Energy Cosmic Rays in some extragalactic objects. The main growth points of these topics are presented, mostly in the case of black hole environments; the case of Young Stellar Objects is more complicated because of the interaction of the stellar magnetosphere with the accretion disk, and the models for this interaction are not yet founded on a reliable theory.

Keywords

Black Hole Accretion Disk Magnetic Surface Young Star Open Field Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balbus, S.A. and Hawley, J.F.: 1992, ApJ. 392, 662.ADSCrossRefGoogle Scholar
  2. Blandford, R.D. and Payne, D.G.: 1982, MNRAS 199, 883.ADSzbMATHGoogle Scholar
  3. Blandford, R.D. and Znajek, R.L.: 1977, MNRAS 179, 433.ADSGoogle Scholar
  4. Beskin, V.: 2000, this proceedings.Google Scholar
  5. Brandenburg, A. and Donner, K.J.: 1997, MNRAS 288, L29.ADSGoogle Scholar
  6. Camenzind, M.: 1990, Reviews in Modern Astronomy 3, in: G. Klare (ed.), Accretion and Winds, Springer-Verlag, Berlin.Google Scholar
  7. Campbell, C.G.: 1999, MNRAS 310, 1175C.ADSCrossRefGoogle Scholar
  8. Casse, F. and Ferreira, J.: 2000, AandA (in press).Google Scholar
  9. Chandrasekhar, S.: 1960, Proc. N.A.S. 46, 56.Google Scholar
  10. Ferreira, J. and Pelletier, G.: 1995, A and A 295, 807.ADSGoogle Scholar
  11. Henri, G. and Pelletier, G.: 1991, ApJ 383, L7.ADSCrossRefGoogle Scholar
  12. Heyvaerts, J. and Norman, C.Z.: 1989, ApJ 347, 1055.MathSciNetADSCrossRefGoogle Scholar
  13. Heyvaerts, J., Priest, E. and Bardou, A.: 1996, ApJ 473, 403.ADSCrossRefGoogle Scholar
  14. Kersalé, E., Longaretti, P.-Y. and Pelletier, G.: 2000, A and A (submitted).Google Scholar
  15. Lovelace, R.V.E., Wang, J.C.L. and Sulkanen, M.E.: 1987, ApJ 315, 504.ADSCrossRefGoogle Scholar
  16. O’Dell, S.L.: 1981, ApJ 243, L147.Google Scholar
  17. Pelletier, G. and Pudritz, R.: 1992, ApJ 394, 117.ADSCrossRefGoogle Scholar
  18. Phinney, E.S.: 1982, MNRAS 198, 1109.ADSGoogle Scholar
  19. Pudritz, R. and Norman, C.: 1983, ApJ 274, 677.ADSCrossRefGoogle Scholar
  20. Rees, MJ. and Meszaros, R: 1992, MNRAS 258, 41.ADSGoogle Scholar
  21. Sauty, C., Tsinganos, K. and Trussoni, E.: 1998, Apand SS. 261. 151S.CrossRefGoogle Scholar
  22. Schatzman, E.: 1962, Ann. d’Ap. 25, 18.ADSGoogle Scholar
  23. Tagger, M. and Pellat, R.: 1999, Aand A 349, 1003.ADSGoogle Scholar
  24. Velikhov, E.: 1959, Sov. Phys. JETP 36, 1398.Google Scholar
  25. Zahn, J.P.: 1991, in: C. Bertout, S. Collin-Souffrin and J.P. Lasota (eds.), Structure and Emission Properties of Accretion Disks, Proc. IAU Colloq. 129, Editions Frontieres, p. 87.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Guy Pelletier
    • 1
  1. 1.Laboratoire d’Astrophysique de l’Observatoire de GrenobleFRANCE

Personalised recommendations