Advertisement

Acceleration and Transport of Energetic Charged Particles in Space

  • J. R. Jokipii
Conference paper

Abstract

Energetic charged particles or cosmic rays are found in space wherever the ambient matter density is small enough to allow them to exist. Their observed kinetic energies vary from just above the local thermal energies to in excess of 1020 eV. The energy spectrum is quite smooth, suggesting that a common mechanism is responsible for particles of all energies. Their arrival directions are distributed evenly in solid angle, with the observed anisotropies being quite small even at energies ∼ 1018 eV. Various scenarios for their acceleration are discussed, including 2nd-order Fermi acceleration, shocks and cosmic-ray viscosity. It is concluded that the most likely mechanism for the acceleration of most energetic particles to high energies is diffusive shock acceleration. This mechanism has the benefit of producing a power-law energy spectrum with a spectral index which is very insensitive to parameters and which is close in magnitude to that observed in a variety of contexts. It is also reasonably fast and efficient. Anomalous cosmic rays in the heliosphere are discussed as one example of the success of the shock-acceleration picture.

Keywords

Solar Wind Interplanetary Magnetic Field Energetic Particle Termination Shock Magnetic Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axford, W.I., Lear, E. and Skadron, G.: 1978, Proc. 15th Int. Cosmic Ray Conf., Plovdiv, Bulgaria, 11, 132.Google Scholar
  2. Barghouty, N. et al.: 2000, in: Acceleration and Transport of Energetic Particles Observed in the Heliosphere, Proceedings of ACE2000, Indian Wells, CA, in press.Google Scholar
  3. Bell, A.R.: 1978, Mon. Not. R. Astron. Soc. 182, 147.ADSGoogle Scholar
  4. Berezhko, E.G. and Krymsky, G.F.: 1981, Soviet Astron. Lett. 7, 352.ADSGoogle Scholar
  5. Blandford, R. and Ostriker, G.: 1978, Astrophys. J. 221, L29.ADSCrossRefGoogle Scholar
  6. Drury, L.O.’C.: 1983, Rep. Prog. Phys. 46, 973.ADSCrossRefGoogle Scholar
  7. Earl, J., Jokipii, J.R. and Morfill, G.: 1988, Astrophys. J. 331, L91.ADSCrossRefGoogle Scholar
  8. Fermi, E.: 1949, Phys. Rev. 75, 1169.ADSzbMATHCrossRefGoogle Scholar
  9. Fisk, L.A., Kozlovsky, B. and Ramaty, R.: 1974, Astrophys. J. Lett. 190, L35.ADSCrossRefGoogle Scholar
  10. Jokipii, J.R.: 1982, Astrophys. J..Google Scholar
  11. Jokipii, J.R.: 1986, J. Geophys. Res. 91, 2929.ADSCrossRefGoogle Scholar
  12. Jokipii, J.R.: 1987, Astwphys. J. 313, 842.ADSCrossRefGoogle Scholar
  13. Jokipii, J.R.: 1992, Astwphys. J. 393, L41.ADSCrossRefGoogle Scholar
  14. Jokipii, J.R.: 1996, Astwphys. J. 466, L47.ADSCrossRefGoogle Scholar
  15. Jokipii, J.R. and Kóta, J.: 1989, The polar heliospheric magnetic field, Geophys. Res. Lett. 16, 1.ADSCrossRefGoogle Scholar
  16. Jokipii, J.R. et al.: 1995, Geophys. Res. Lett. 22, 3385.ADSCrossRefGoogle Scholar
  17. Krymsky, R.F.: 1977, Dokl. Akad. Nauk SSSR 234, 1306.ADSGoogle Scholar
  18. Mewaldt, R. et al.: 1996, Astwphys. J. 466, L47.ADSCrossRefGoogle Scholar
  19. Parker, E.N.: 1965, Planet. Space Sci. 13, 9.ADSCrossRefGoogle Scholar
  20. Pesses, M.E., Jokipii, J.R. and Eichler, D.: 1981, Astwphys. J. 246, L85.ADSCrossRefGoogle Scholar
  21. Steenberg, C.D. and Moraal, H.: 1999, J. Geophys. Res 104, 24879.ADSCrossRefGoogle Scholar
  22. Williams, L.L. and Jokipii, J.R.: 1993, Astwphys. J. 417, 725.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • J. R. Jokipii
    • 1
  1. 1.The University of ArizonaTucsonUSA

Personalised recommendations