Skip to main content

Exploring The Ultimate Limits of Control: Quantum Networks for Non-Classical Information Processing

  • Chapter
Frontiers of Nano-Optoelectronic Systems

Part of the book series: NATO Science Series ((NAII,volume 6))

  • 257 Accesses

Abstract

The down-scaling of electronic devices has been an unprecedented success-story over the last decades. This development has, to a large extent, been based on continuous improvements of structural control. As we approach nanoscopic (atomic) precision, the question arises whether dynamical control (function) will be able to follow down to these ultimate limits, i.e. whether the exploitation of the fundamental rules of quantum dynamics will become possible at large scale. To approach this goal there are at least two different paradigms which could be exploited: “Selective control” and “collective control”. The latter should be an interesting alternative for nanoscopic quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] R. Landauer, “Information is physical”, in D. Matzke (ed), Proc. of the workshop on Physics and Computation, IEEE Computer Soc, Los Alamitos, p. 1–4 (1993)

    Google Scholar 

  2. M. A. Mahowald and C. Mead, “The Silicon Retina”, Sci. Am. May 1991, p. 40

    Google Scholar 

  3. J. S. Nicolis, Chaos and Information Processing, World Scientific, Singapore 1991

    Google Scholar 

  4. A. Steane, “Quantum computation”, Repts. Progr. Phys. 61, 117 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Ekert and R. Jozsa, Rev. mod. Phys. 68, 733 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack”, Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  7. C. Monroe et al., “Demonstration of a fundamental quantum logic gate”, Phys. Rev. Lett. 75, 4714 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. B. E. King et al., “Cooling the collective motion of trapped ions to initialize a quantum register”, Phys. Rev. Lett. 81, 1525 (1998)

    Article  ADS  Google Scholar 

  9. P. Domokos et al., “Simple cavity-QED two-bit universal quantum logic gate”, Phys. Rev. A 52, 3554 (1995)

    Article  ADS  Google Scholar 

  10. N. A. Gershenfield and 1. L. Chuang, “Bulk-spin-resonance quantum computation”, Science 275, 350 (1997)

    Article  MathSciNet  Google Scholar 

  11. I. Chuang et al., “Experimental realization of a quantum algorithm”, Nature 393, 143 (1998)

    Article  ADS  Google Scholar 

  12. E. Kane, “A silicon-based nuclear spin quantum computer”, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  13. D. Jaksch et al., “Entanglement of atoms via cold controlled collisions”, Phys. Rev. Lett. 82, 1975 (1998)

    Article  ADS  Google Scholar 

  14. G. K. Brennen et al., “Quantum logic gates in optical lattices”, Phys. Rev. Lett. 82, 1060 (1999)

    Article  ADS  Google Scholar 

  15. A. Shnirman, G. Schön, and Z. Hermon, “Quantum manipulations of small Joseph-son junctions”, Phys. Rev. Lett. 79, 2371 (1997)

    Article  ADS  Google Scholar 

  16. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots”, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  17. E. Buks et al., “Dephasing due to which-path detector”, Nature 391, 871 (1998)

    Article  ADS  Google Scholar 

  18. G. Mahler and V. A. Weberruss, Quantum Networks, Springer, Berlin, New York 1995, 1998

    Google Scholar 

  19. W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned”, Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  20. G. Mahler, M. Keller, and R. Wawer, “Quantum networks: master equation and local measurements”, Z. Phys. B 104, 153 (1997)

    Article  ADS  Google Scholar 

  21. N. D. Mermin, “What is quantum mechanics trying to tell us?” Am. J. Phys. 66, 753 (1998)

    Article  ADS  Google Scholar 

  22. A. Barenco et al., “Elementary gates for quantum computation”, Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  23. K. Molmer and A. Sorensen, “Multiparticle entanglement with hot trapped ions”, Phys. Rev. Lett. 82, 1835 (1999)

    Article  ADS  Google Scholar 

  24. A, Sorensen and K. Molmer, “Quantum computation with ions in thermal motion”, Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  25. P. Zanardi and F. Rossi, “Subdecoherent information encoding in a quantum dot array”, Phys. Rev. B 59, 8170 (1999)

    Article  ADS  Google Scholar 

  26. The implementation of permutation-symmetric 2-particle-interaction is severely constrained by the fact that interactions depend on distance, which, in general, cannot be invariant under permutation.

    Google Scholar 

  27. A. Ekert, “Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mahler, G., Otte, A. (2000). Exploring The Ultimate Limits of Control: Quantum Networks for Non-Classical Information Processing. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics