Skip to main content

Three-Dimensional Nanostructures with Electron and Photon Confinement

  • Chapter
Frontiers of Nano-Optoelectronic Systems

Part of the book series: NATO Science Series ((NAII,volume 6))

  • 270 Accesses

Abstract

We consider evolution of matter from isolated nanocrystals to quantum dot solids and from microcavities to photonic solids. A possibility of simultaneous electron and photon confinement in mesoscopic structures is considered, e.g. quantum dot in a micro- cavity and quantum dot in a photonic crystal. Colloidal crystals with self-organisation on nanometer to micrometer scale are shown as the suitable mesoscopic structures to trace these effects experimentally and to design artificial matter with engineering of optical and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banyai, L. and S. W. Koch, S.W. (1993) Semiconductor Quantum Dots, World Scientific Singapore.

    Google Scholar 

  2. Woggon, U. (1996) Optical Properties of Semiconductor Quantum Dots, Springer-Verlag, Berlin.

    Google Scholar 

  3. Gaponenko, S.V. (1998) Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  4. Bimberg, D., M. Grundman, M., and Ledentsov, N. (1999) Quantum Dot Heterostructures, Wiley and Sons, London.

    Google Scholar 

  5. Spectroscopy of Isolated and Assembled Nanocrystals (1996) Eds. Brus, L., Efros, Al., T. Itoh, T. Special issue of the J. Luminescence, v. 70.

    Google Scholar 

  6. Bogomolov, V.N., and Pavlova, T.M. (1956) Three-dimensional cluster lattices. Semiconductors, 29, 428–435.

    ADS  Google Scholar 

  7. G. Romanov and C. Sotomayor Torres, Three-dimensional lattices of nanostructures: A template approach, in Handbook of Nanostructured Materials and Nanotechnology, Ed. H.S. Nalwa, Orlando: Academic Press 2000, pp. 231–323.

    Chapter  Google Scholar 

  8. Pieranski, P. (1983) Colloidal crystals, Contemp. Physics 24, 25–73.

    Article  ADS  Google Scholar 

  9. Murray, C.B., Kagan, C.R., Bawendi, M.G. (1995) Self-organization of CdSe Nanocrystallites into threedimensional quantum dot superlattices. Science 270, 1335–1338.

    Article  ADS  Google Scholar 

  10. Artemyev, M.V., Bibik, A.I, Gurinovich, L.I, Gaponenko, S.V., and Woggon, U. (1999) Evolution from individual to collective electron states in a dense quantum dot ensemble. Phys. Rev. B 60, 1505–1507.

    Article  ADS  Google Scholar 

  11. Artemyev, M.V., Woggon, U., and Gaponenko, S.V. (2000). Optical properties of dense quantom dot structures. Jap. J. Appl, Phys. (in press).

    Google Scholar 

  12. Vossmeyer, T., Katsikas, L., Giersing, M., Popovic, I.G., Diesner, K., Chemseddine, A., Eychmuller, A., and Weller, H. (1994) CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift.: J. Amer. Chem. Societ, 98, 7665–7672.

    Google Scholar 

  13. Shklovskii, B.I., and Efros, A.L., (1982) Electron Properties of Doped Semiconductors, Springer-Verlag, Berlin.

    Google Scholar 

  14. John, S. (1987) Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2487.

    Article  ADS  Google Scholar 

  15. Purcell, E.M. (1946). Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–687.

    Article  Google Scholar 

  16. Ohnesorge, B., Bayer, M., Forchel, A., Reithmaier, IP., Gippius, N.A., and Tikhodeev, S.G. (1997) Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities. Phys. Rev. B 56, R4367–4370.

    Article  ADS  Google Scholar 

  17. Yamanishi, M. (1995) Combined quantum effects for electron and photon systems in semiconductor microcavity light emitters. Progress in Quant. Electron. 19, 1–39.

    Article  ADS  Google Scholar 

  18. Pellegrini, V., Tredicucci, A., Mazzoleni, C., and Pavesi, L. (1995) Enhanced optical properties in porous silicon microcavities. Phys. Rev. B 52, R14328–R14331.

    Article  ADS  Google Scholar 

  19. Artemyev, M. V., and Woggon, U. (2000) Quantum dots in photonic dots. Appl. Phys. Lett. 76, 1353–1355.

    Article  ADS  Google Scholar 

  20. Bykov, V. P. (1972) Spontaneous emission in a periodic structure, Zh. Eksp. Teor. Fiz., 62, 505–513.

    Google Scholar 

  21. Yablonovitch, E. (1987) Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58, 2059–2062.

    Article  ADS  Google Scholar 

  22. John, S. (1987) Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 58, 2486–2489.

    Article  ADS  Google Scholar 

  23. Bykov, V. P. (1993) Radiation of Atoms in a Resonant Environment. World Scientific, Singapore.

    Google Scholar 

  24. Joannopoulos, J.D., Meade, R.D., and Winn J. N. (1995) Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton.

    MATH  Google Scholar 

  25. J.Martorell, J, and N. M. Lawandy, N.M. (1990) Observation of inhibited spontaneous emission in aperiodic dielectric structure, Phys. Rev. Lett., 65, 1877–1880.

    Article  ADS  Google Scholar 

  26. Astratov, V. N., Bogomolov, V. N., Kaplyanskii, A. A., Samoilovich, S. M., and Vlasov, Yu. A. (1995) Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic band gap effects, II Nuovo Cimento, 17, 1349–1354.

    Article  ADS  Google Scholar 

  27. Bogomolov, V. N., Gaponenko, S. V., Kapitonov, A. M., Prokofiev, A. V., Ponyavina, A. N., Silvanovich, N. I., and Samoilovich, S. M. (1996) Photonic band gap in the visible range in a three-dimensional solid state lattice, Appl. Phys. A 63, 613–616.

    Article  ADS  Google Scholar 

  28. Gaponenko, S. V., Bogomolov, V. N., Petrov, E. P., Kapitonov, A. M., Yarotsky, D. A., Kalosha, I. I., Eychmueller, A. A., Rogach, A. L., McGilp, J., Woggon, U., and Gindele, F. (1999) Spontaneous Emission of Dye Molecules, Semiconductor Nanocrystals, and Rare-Earth Ions in Opal-Based Photonic Crystals, J. Lightwave Technol. 17,.

    Google Scholar 

  29. P. Pieranski, P. (1983) Colloidal crystals, Contemp. Phys., 24, 25–53.

    Article  ADS  Google Scholar 

  30. Deniskina, N. D., Kalinin, D. V., and Kazantseva, L. K. (1988) Gem-Quality Opals, Their Synthesis and Genesis in Nature. Novosibirsk: Nauka

    Google Scholar 

  31. Bogomolov, V. R, Gaponenko, S. V., Germanenko, I. R, Kapitonov, A. M., Petrov, E. P., Gaponenko, N. V., Prokofiev, A. V., Ponyavina, A. R, Silvanovich, N. I., and Samoilovich, S. M. (1997) Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev.E 55, 7619–7625.

    Article  ADS  Google Scholar 

  32. Petrov, E. P., Bogomolov, V. R, Kalosha, I.I., and Gaponenko, S. V. (1998) Spontaneous emission of organic molecules in a photonic crystal, Phys. Rev. Lett. 81, 77–80; (1999) ibid. 83, 5401-5402.

    Article  ADS  Google Scholar 

  33. Gaponenko, S. V., Kapitonov, A. M., Bogomolov, V. R, Prokofiev, A. V., Eychmuller, A., and Rogach, A. L. (1998) Electrons and photons in mesoscopic structures: Quantum dots in a photonic crystal, JETP Lett., 68, 142–147.

    Article  ADS  Google Scholar 

  34. Romanov, S. G., Fokin, A. V., Alperovich, V. I., Johnson, R P., and De La Rue, R. M. The effect of the photonic stop-band upon the photoluminescence of CdS in Opal, Phys. Stat. Sol. A, 164, 169–173.

    Google Scholar 

  35. Blanco, A., Lopez, C., Mayoral, R., Migues, H., Meseguer, F., Mifsud, A., and J. Herrero (1998) CdS photoluminescence inhibition by a photonic crystal, Appl. Phys. Lett., 73, 1781–1783.

    Article  ADS  Google Scholar 

  36. Romanov, S. G., Fokin, A. V., Tretyakov, V. V., Butko, V. Y., Alperovich, V. I., Johnson, N. P., Sotomayor Torres, C. M. (1996) Optical properties of ordered three-dimensional arrays of structurally confined semiconductors J. Cryst. Growth, 159, 857–860.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaponenko, S.V. (2000). Three-Dimensional Nanostructures with Electron and Photon Confinement. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics