Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

  • 595 Accesses

Abstract

The subject of computer science is information processing or problem solving with electronic computing devices. These devices may be standard personal computers, large parallel computers or special purpose hardware circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allender, E. (1989). A note on the power of threshold circuits. 30th Annual Symposium on Foundation of Computer Science (pp. 580–584). Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Anderson, J.A. (1977). Neural models with cognitive implications. In S. LaBerge & S.J. Samuels (eds.), Basic processes in reading perception and comprehension (pp. 27–90). Hillsdale, NJ: Lawrence Erlbaum Assoc.

    Google Scholar 

  • Braun, H. (1991). On solving traveling salesman problems by genetic algorithms. Proceedings of the International Conference on Parallel Problem Solving from Nature PPSN 91 (pp. 128–132). Springer Lecture Notes in Computer Science 496 Heidelberg-Berlin: Springer Verlag.

    Google Scholar 

  • Braun, H. (1997). Neuronale Netze — Optimierung durch Lernen und Evolution. Heidelberg-Berlin: Springer Verlag.

    Book  MATH  Google Scholar 

  • Braun, H. (1999). Evolution — A paradigm for constructing intelligent agents. In H. Ritter, H. Cruse, & J. Dean (eds.), Prerational intelligence: Adaptive behavior and intelligent systems without symbols and logic, Vol. 2 (pp. 279–298). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Braun, H., & T. Müller (1990). Enhancing Marr’s cooperative algorithm. Proceedings of The International Neural Network Conference (pp. 38–41). Paris: Kluwer Academic Publishers.

    Google Scholar 

  • Braun, H., J. Feulner, & V. Ullrich (1991). Learning strategies for solving the problem of planning using backpropagation. Proceedings of NEURO-Nimes 91, 4th International Conference on Neural Networks and their Applications. Nanterre, France: EC2.

    Google Scholar 

  • Braun, H., & P. Zagorski (1994). ENZO-M — A hybrid approach for optimizing neural networks by evolution and learning parallel problem solving from nature. Proceedings of the International Conference on Evolutionary Computation PPSN III.

    Google Scholar 

  • Chandra, A.K., L.J. Stockmeyer, & U. Vishkin (1984). Constant depth reducibility. SIAM Journal on Computing 13(2), 423–439.

    Article  MathSciNet  MATH  Google Scholar 

  • Church, A. (1941) The calculi of lambda-conversion. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Fahlman, S., & C. Lebiere (1990). The cascade correlation learning architecture. Technical Report CMU-CS-90–100, Pittsburgh PA: Carnegie Mellon University.

    Google Scholar 

  • Fogelman, F, E. Goles, & G. Weisbuch (1983). Transient length in sequential iterations of threshold functions. Discrete Applied Mathematics 6, 95–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Furst, M., J.B. Saxe, & M. Sipser (1984). Parity, circuits and the polynomial time hierarchy. Mathematical Systems Theory 17(1), 13–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldmann, M., J. Hastad, & A. Razborov (1992). Majority gates vs. general weighted threshold gates. Proceedings of the 7th Annual Structure in Complexity Theory Conference (pp. 2–13). New York: IEEE Computer Society Press.

    Google Scholar 

  • Goles, E., & J. Olivos (1981). The convergence of symmetric threshold automata. Information and Control 51, 98–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathemat-ica und verwandter Systeme, I. Monatsschrift Mathematische Physik 38, 173–1981. (English translation: On formally undecidable propositions of principia mathematica and related systems (translated by B. Meltzer). New York: Basic Books.)

    Article  Google Scholar 

  • Grötschel, M. & O. Holland (1991). Solution of large-scale symmetric traveling salesman problems. Mathematical Programming 51, 141–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Grossberg, S. (1987). The adaptive brain I/II Amsterdam: Elsevier.

    Google Scholar 

  • Hajnal, A., W. Maass, P. Pudlák, M. Szegedy, & G. Turán (1987, October) Threshold circuits of bounded depth. In 28th Annual Symposium on Foundations of Computer Science (pp. 99–110). New York: IEEE Computer Society Press.

    Google Scholar 

  • Haken, A., & M. Luby (1988). Steepest descent can take exponential time for symmetric connection networks. Complex Systems 2, 191–196.

    MATH  Google Scholar 

  • Haken, A. (1989). Connectionist networks that need exponential time to stabilize. Unpublished manuscript. Deptartment of Computer Science, University of Toronto.

    Google Scholar 

  • Hartley, R., & H. Szu (1987). A comparison of the computational power of neural networks. Proceedings of the 1987 International Conference on Neural Networks, Vol. 3 (pp. 15–22). New York: IEEE Computer Society Press.

    Google Scholar 

  • Hassibi, B. & D.G. Storck (1993). Second order derivatives for network pruning: Optimal brain surgeon. In S.J. Hansen, J.D. Cowan, & C.L. Giles (eds.), Advances in neural information processing systems 5 (NIPS 5) (pp. 164–171). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Hastad, J. (1992). On the size of weights for threshold gates. Unpublished Manuscript.

    Google Scholar 

  • Hong, J. (1986). Computation: Computability, similarity and duality. London: Pitman Publishing.

    MATH  Google Scholar 

  • Hong, J. (1987). On connectionist models. Technical Report 87–012, Department of Computer Science, University of Chicago.

    Google Scholar 

  • Hopfield, J.J. (1982, April). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA, 79 (pp. 2554–2558).

    Article  MathSciNet  Google Scholar 

  • Hopfield, J.J., & D.W. Tank (1985).“Neural” computation of decisions in optimization problems. Biological Cybernetics 52, 141–152.

    MathSciNet  MATH  Google Scholar 

  • Jordan, M., & R. Jacobs (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214.

    Article  Google Scholar 

  • Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395.

    Article  MathSciNet  MATH  Google Scholar 

  • Kleene, S.C. (1956). Representation of events in nerve nets and finite automata. In CE. Shannon & J. McCarthy (eds.), Automata Studies. Annals of Mathematics Studies 34 (pp. 3–41). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Littmann, E., & H. Ritter (2000). Modularization by cascading neural networks. In H. Ritter, H. Cruse, & J. Dean (eds.), Prerational intelligence: Adaptive Behavior and intelligent systems without symbols and logic, Vol 2 (pp. 165–181). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Maass, W., G. Schnitger, & E. Sontag (1991). On the computational power of sigmoid versus Boolean threshold circuits. Proceedings of the 32th Annual IEEE Symposium on Foundations of Computer Science (pp. 767–776). New York: IEEE Press.

    Google Scholar 

  • McCulloch, W.S., & W. Pitts (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Mealey, G.H. (1955). Method for synthesizing sequential circuits. Bell Labs Technical Journal 34, 1045–1079.

    Article  Google Scholar 

  • Moore, E.F. (1956). Gedanken-experiments on sequential machines. In C.E. Shannon & J. McCarthy (eds.), Automata Studies. Annals of Mathematics Studies 34 (pp. 129–153). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Muroga, S., I. Toda, & S. Takasu (1961, May). Theory of majority decision elements. Journal of the Franklin Institute 271, 376–418.

    Article  MathSciNet  MATH  Google Scholar 

  • Neumann von, J. (1951). The general and the logical theory of automata. In L.A. Jeffress (ed.), Cerebral mechanisms in behavior: The Hixon symposium (pp. 1–32). New York: Wiley.

    Google Scholar 

  • Nguyen, D., & B. Widrow (1990). The truck backer-upper: An example of self-learning in neural networks. In R. Eckmiller (ed.), Advanced neural computers (pp. 11–19). Amsterdam: North Holland.

    Google Scholar 

  • Padberg, M. & G. Rinaldi (1987). Optimization of a 532-city symmetric traveling salesman problem by branch and cut. Operations Research Letters 6, 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  • Parberry, I. (1994). Circuit complexity and neural networks. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Riedmiller, M. (1996). Learning to control dynamic systems. In R. Trappl (ed.), Proceedings of the European Meeting on Cybernetics and System Research EMCSR 96. London: World Scientific.

    Google Scholar 

  • Ritter, H., T. Martinetz, & K. Schulten (1990). Neuronale Netze. Reading, MD: Addison Wesley.

    Google Scholar 

  • Sigelman, H.T., & E.D. Sontag (1992). On the computational power of neural nets. Proceedings of the 5th Annual Workshop on Computational Learning Theory (pp. 440–449). New York: ACM Press.

    Google Scholar 

  • Sipser, M. (1983). Borel sets and circuit complexity. Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing (pp. 61–69). New York: ACM Press.

    Google Scholar 

  • Sontag, E.D. (1992). Feedforward nets for interpolation and classification. Journal of Computational System Science 45, 20–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Stahlberger, A., & M. Riedmiller (1997). Fast pruning and feature extraction by removing complete units. In M.C. Mozer, M.I. Jordan, & T. Petsche (eds.), International Conference of Neural Information Processing Systems, NIPS 9 (pp. 655–661). Cambridge, MA: MIT Press.

    Google Scholar 

  • Sutton, R.S. (1988). Learning to predict by the methods of temporal differences. Machine Learning 3, 9–14.

    Google Scholar 

  • Sutton, R.S. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. In D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (eds.), Advances in Neural Information Processing Systems 8 (pp. 1038–1044). Cambridge: MIT Press.

    Google Scholar 

  • Tesauro, G.J. (1989). Neurogammon wins computer Olympiad. Neural Computation 1,321–323.

    Article  Google Scholar 

  • Tesauro, G.J. (1992). Practical issues in temporal difference learning. Machine Learning 8,257–277.

    MATH  Google Scholar 

  • Tesauro, G.J. (1995). Temporal difference learning and TD-Gammon. Communications of the ACM’ 38(3), 58–68.

    Article  Google Scholar 

  • Turing, A.M. (1936). On computable numbers with an application to the Entschei-dungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braun, H. (2000). Computer Science Perspectives on Prerational Intelligence. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_82

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_82

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics